#$&* course Mth 279 3/18 8 Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: solve for dy(t)/dt, bring 3y(t)^2 back over to make easier to integrate wrt t left with y(t)^3 = t-t^2 + c y(t) = cubed root ( t - t^2 + c) { going to substitute the cubed root as CR } now sub our y(0) = -1 in -1 = CR ( -1 -1^2 + c) -1 = CR c c = -1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: i'm not completely positive on what you mean on the state a problem, so i worked backwards until I got a problem, which I guess could be stated in a way. working bakcwards to find an answer for c sub in 2 for t to find y^3 + sin(y) = 0 integrate wrt t y(t) ^4/4 - cos(y) = c solve for c with the initial condition of t = 2 to find that c = 4 - cosy sub back into the old equation y(t)^4 / 4 - cos(y) = 4 - cos(y) solve this equation with the intitial condition of y(0) = 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) and determine the t interval over which he solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ?????????? Ok, I'm not sure if this can be solved without knowing the intial conditions. y(0) = ? anyways, just solving for c, get to an integration dy(t)/dt sin(t)^-1 dt = ( y(t)^2 + 2y(t) + 1) dt
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 an dy ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I'm not completely sure what to do with this, so I solved for y by integrating to get a constant for each equation. now solving for c to get these three equations c_1 = y + y^3/3 c_2 = y - y^4/4 c_3 = y^3/3 - 2y^2 + y Now using values of -2, -1, 0, 1, and 2 I substituted these values in for y in our c equations, to find c I graphed each c equation and the overall slope in the first quadrant is about 2/3 When I say overall slope, i mean the ""solution curve"" for each combined graph are all basically a slope of 2/3 each graph seems to come from the left, intersecting at the origin, and going in the positive x and y direction until the point 1,1 where the c_3 graph then falls into negative y numbers confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------