#$&* course Mth 279 Sorry this took a while, I was stuck on 3 for a little while, but I think I got it.4/10 7 Query 06 Differential Equations
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This equation is indeed again, not exact. therefore I can not solve it as an exact equation. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: rearanging to get to the m + n dy = 0 form . so the partial of m wrt y is -tysin(ty) + cos(ty) and the partial of N wrt t is also -tysin(ty) + cos(ty) these equal eachother, meaning they are equal, so we solve for psi. set psi_t = to our origional M equation of ycos(ty) + 1. notice, we can set d/dy psi = psi_y + psi_t*y', then integrate that function wrt t to get psi_t = sin(ty) + t + h(y), we are calling h(y) our arbitrary constant that is a function of y, so that when we take the derivative wrt y, we have h(y)' now integrate this wrt y, we have -cos(ty)/t + ty + h(y)' knowing from our origional re-written equation d/dy psi = psi_y + psi_t*y', we can set h(y)' = psi_y from before. so rearange to solve for h(y)' = -cos(ty) + 2ye^(y^2) -ty + cos(ty)/t now integrate wrt y to solve for h(y) = -sin(ty)/t + e^(y^2) -ty^/2 + sin(ty)/t^2 + c now this is where I'm confused, I know that psi = c, so the point of finding c is to find out what psi equals, but i'm unsure of how to use my initial conditions of y(0) = pi because in this h(y) equation, I have t values, and if I only sub pi into the h(y) equation, i'm left with a variable in there, therefore, h(y) is not a constant. help? maybe an intermediate step was messed up?
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: just looking at the value of M(yt) = t^2 +y^2sin(t), the partial of m wrt y is 2ysin(t) so if it is exact, then partial of N wrt t should equal 2ysin(t), so integrate this wrt t to get the origional N(ty) equation integrated wrt 2y int(sin(t) dt ) = -2ycos(t) + c so the most general possible form of N(ty) is -2ycos(t) + c.....not sure if the c should be in there. but thats basically it. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: just looking at the equation; -b +- sqrt(b^2-4ac ) / 2a then a has to be 1 and b has to be 2 as for y_0, it should be -1 - sqrt(3)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: