#$&* course Mth 279 4/28 5 Query 14 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: again using the same process, sub y = e^rt and factor out the e^rt to be left with r^2 +2r + 1 = 0 this factors to (r+1)(r+1) = 0 where r = -1 for both . so our solution to the equation is now y(t) = c_1e^-t which is in fact y_1 = e^-t. now to determine if they are linearly independent..... here it only meets the y_1 solution, but when I put in the y_2 and y_1 into a matrix [ y_1 y_2 , y_1' y_2' ] the determinant is actually 0, and this goes against the wronskian which has to equal a non-zero determinant, ?????????? but if the determinent is 0, then that means it is linearly dependent. so no, it is not linearly independent
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Suppose y_1 and y_2 are solutions to the equation y '' + alpha y ' + beta y = 0 and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t). What are the values of alpha and beta? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: if the W is e^-t, then e^-t = e^2t + ( y_2) where y_2 would = -e^3t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"