OpenQA

course Phy 231

002. Velocity*********************************************

Question: `q001. Note that there are 14 questions in this assignment.

If an object moves 12 meters in 4 seconds, then at what average rate is the object moving? Explain how you obtained your result in terms of commonsense images.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

v_Ave = 12 m/4 s = 3 m/s. I obtained this result from knowing that things move at a rate of change in position in relation to change in time. Because I know this, I divided these two values and obtained 3 m/s.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Moving 12 meters in 4 seconds, we move an average of 3 meters every second.

We can imagine dividing up the 12 meters into four equal parts, one for each second. Each part will span 3 meters, corresponding to the distance moved in 1 second, on the average.

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q002. How is the preceding problem related to the concept of a rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

How fast something is moving is a rate because it is the average rate of change of position with respect to the change in time.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

A rate is obtained by dividing the change in a quantity by the change in another quantity on which is dependent. In this case we divided the change in position by the time during which that change occurred.

More specifically

• The rate of change of A with respect to B is defined to be the quantity (change in A) / (change in B).

An object which moves 12 meters in 3 seconds changes its position by 12 meter during a change in clock time of 3 seconds. So the question implies

• Change in position = 12 meters

• Change in clock time = 3 seconds

When we divide the 12 meters by the 3 seconds we are therefore dividing (change in position) by (change in clock time). In terms of the definition of rate of change:

• the change in position is the change in A, so position is the A quantity.

• the change in clock time is the change in B, so clock time is the B quantity.

So

(12 meters) / (3 seconds) is

(change in position) / (change in clock time) which is the same as

average rate of change of position with respect to clock time.

Thus

• Average velocity is average rate of change of position with respect to clock time.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q003. We are still referring to the situation of the preceding questions:

Is object position dependent on time or is time dependent on object position?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Position is dependent on time.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Object position is dependent on time--the clock runs whether the object is moving or not so time is independent of position. Clock time is pretty much independent of anything else (this might not be so at the most fundamental level, but for the moment, unless you have good reason to do otherwise, this should be your convention).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q004. We are still referring to the situation of the preceding questions:

So the rate here is the average rate at which position is changing with respect to clock time. Explain what concepts, if any, you missed in your explanations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I understand and explained all concepts relevant to the average rate of position with respect to time.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Be sure you have reviewed all the definitions and concepts associated with velocity. If there’s anything you don’t understand, be sure to address it in your self-critique.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q005. If an object is displaced -6 meters in three seconds, then what is the average speed of the object what is its average velocity? Explain how you obtained your result in terms of commonsense images and ideas.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Average speed: 6m/3s = 2 m/s. Average velocity: -6m/3s = -2 m/s. I obtained these results because I know that speed is only the rate of change of position with respect to time, while velocity includes a direction. Velocity has speed and direction associated with it. This means that either way the object is moving, it has the same speed, but if it is moving in the negative direction, its velocity is negative and if it is moving in the positive direction, its velocity is negative.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Speed is the average rate at which distance changes with respect to clock time. Distance cannot be negative and the clock runs forward. Therefore speed cannot be negative.

Velocity is the average rate at which position changes with respect to clock time, and since position changes can be positive or negative, so can velocity.

In general distance has no direction, while velocity does have direction.

Putting it loosely, speed is just how fast something is moving; velocity is how fast and in what direction.

In this case, the average velocity is

• vAve = `ds / `dt = -6 m / (3 s) = -2 m/s.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I did not make the distinction between distance and position and I think that is a good way to think about the difference between speed and velocity. Speed is the rate that distance changes with respect to time, while velocity is the rate that position changes with respect to time.

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q006. If `ds stands for the change in the position of an object and `dt for the time interval during which its position changes, then what expression stands for the average velocity vAve of the object during this time interval?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

vAve = `ds/`dt

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Average velocity is rate of change of position with respect to clock time.

Change in position is `ds and change in clock time is `dt, so average velocity is expressed in symbols as

• vAve = `ds / `dt.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q007. How do you write the expressions `ds and `dt on your paper?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I write `ds (change in position) on my paper as the Greek letter Delta and s and I write `dt (change in time) on my paper as the Greek letter Delta and t.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You use the Greek capital Delta when writing on paper or when communicating outside the context of this course; this is the symbol that looks like a triangle. See Introductory Problem Set 1.

`d is used for typewritten communication because the symbol for Delta is not interpreted correctly by some Internet forms and text editors. You should get in the habit of thinking and writing the Delta symbol when you see `d.

You may use either `d or Delta when submitting work and answering questions.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q008. If an object changes position at an average rate of 5 meters/second for 10 seconds, then how far does it move?

How is this problem related to the concept of a rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5 m/s * 10 s = 50 m

This problem is related to the concept of rate because a rate is given to describe how the object changes position with respect to time. The given rate is 5 m/s. In this problem, you then use this rate, combined with a given time interval, to determine how much the object changes position.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

In this problem you are given the rate at which position changes with respect to time, and you are given the time interval during which to calculate the change in position.

The definition of rate of change states that the rate of change of A with respect to B is (change in A) / (change in B), which we abbreviate as `dA / `dB. `dA stands for the change in the A quantity and `dB for the change in the B quantity.

For the present problem we are given the rate at which position changes with respect to clock time. The definition of rate of change is stated in terms of the rate of change of A with respect to B.

• So we identify the position as the A quantity, clock time as the B quantity.

The basic relationship

• ave rate = `dA / `dB

can be algebraically rearranged in either of two ways:

• `dA = ave rate * `dB or

• `dB = `dA / (ave rate)

Using position for A and clock time for B the above relationships are

• ave rate of change of position with respect to clock time = change in position / change in clock time

• change in position = ave rate * change in clock time

• change in clock time = change in position / ave rate.

In the present situation we are given the average rate of change of position with respect to clock time, which is 5 meters / second, and the change in clock time, which is 10 seconds.

Thus we find

• change in position = ave rate * change in clock time = 5 cm/sec * 10 sec = 50 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q009. If vAve stands for the rate at which the position of the object changes with respect to clock time (also called velocity) and `dt for the time interval during which the change in position is to be calculated, then how do we write the expression for the change `ds in the position?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

`ds = vAve * `dt

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To find the change in a quantity we multiply the rate by the time interval during which the change occurs.

The velocity is the rate, so we obtain the change in position by multiplying the velocity by the time interval:

• `ds = vAve * `dt.

The units of this calculation pretty much tell us what to do:

• We know what it means to multiply pay rate by time interval (dollar / hr * hours of work) or automobile velocity by the time interval (miles / hour * hour).

• When we multiply vAve, for example in in units of cm / sec or meters / sec, by `dt in seconds, we get displacement in cm or meters. Similar reasoning applies if we use different measures of distance.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q010. Explain how the quantities average velocity vAve, time interval `dt and displacement `ds are related by the definition of a rate, and how this relationship can be used to solve the current problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The quantities average velocity (vAve), time (`dt), and displacement (`ds) are related by the definition of a rate. The average velocity is equal to the displacement divided by the time interval; vAve=`ds/`dt.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

vAve is the average rate at which position changes. The change in position is the displacement `ds, the change in clock time is `dt, so vAve = `ds / `dt.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q011. The basic rate relationship vAve = `ds / `dt expresses the definition of average velocity vAve as the rate at which position s changes with respect to clock time t. What algebraic steps do we use to solve this equation for `ds, and what is our result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this equation for `ds, which is the change in position, we multiply the average velocity, vAve, by the change in time, `dt.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To solve vAve = `ds / `dt for `ds, we multiply both sides by `dt. The steps:

vAve = `ds / `dt. Multiply both sides by `dt:

vAve * `dt = `ds / `dt * `dt Since `dt / `dt = 1

vAve * `dt = `ds . Switching sides we have

`ds = vAve * `dt.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q012. How is the preceding result related to our intuition about the meanings of the terms average velocity, displacement and clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The preceding result shows that the change in position is equal to the average velocity multiplied by the change in time, which agrees with what we know intuitively.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For most of us our most direct intuition about velocity probably comes from watching an automobile speedometer.

We know that if we multiply our average velocity in mph by the duration `dt of the time interval during which we travel, we get the distance traveled in miles. From this we easily extend the idea.

Whenever we multiply our average velocity by the duration of the time interval, we expect to obtain the displacement, or change in position, during that time interval.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q013. What algebraic steps do we use to solve the equation vAve = `ds / `dt for `dt, and what is our result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve for `dt, we first multiply both sides by `dt:

vAve = `ds / `dt Multiply both sides by `dt.

vAve * `dt = `ds / `dt * `dt The `dt / `dt on the right side cancels out.

vAve * `dt = `ds Divide by vAve.

(vAve * `dt)/vAve = `ds/vAve The vAve/vAve cancels out on the left side.

`dt = `ds/vAve

Our result is `dt = `ds/vAve which indicates that the change in time equals the change in position divided by the average velocity.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To solve vAve = `ds / `dt for `dt, we must get `dt out of the denominator. Thus we first multiply both sides by the denominator `dt. Then we can see where we are and takes the appropriate next that. The steps:

vAve = `ds / `dt. Multiply both sides by `dt:

vAve * `dt = `ds / `dt * `dt Since `dt / `dt = 1

vAve * `dt = `ds. We can now divide both sides by vAve to get `dt = `ds / vAve.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q014. How is this result related to our intuition about the meanings of the terms average velocity, displacement and clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This result is related to our intuition because we intuitively know that if you divide the distance travelled by your average velocity you should end up with the amount of time you’ve been travelling, which is what this results indicates.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If we want to know how long it will take to make a trip at a certain speed, we know to divide the distance in miles by the speed in mph.

• If we divide the number of miles we need to travel by the number of miles we travel in hour, we get the number of hours required. This is equivalent to the calculation `dt = `ds / vAve.

• We extend this to the general concept of dividing the displacement by the velocity to get the duration of the time interval.

When dealing with displacement, velocity and time interval, we can always check our thinking by making the analogy with a simple example involving miles, hours and miles/hour.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* 3

"

&#Good work. Let me know if you have questions. &#

#$&*