course MTH 272
......!!!!!!!!...................................Applied Calculus II
......!!!!!!!!...................................
15:02:54
......!!!!!!!!...................................
**** Query problem 6.1.5 (was 6.1.4) integral of (2t-1)/(t^2-t+2)
......!!!!!!!!...................................
15:05:20 u= t^2 -t +2 du = 2t -1 int ((du/dt)/u) = ln |u| +C = ln |t^2 -t +2| +C
.........................................
15:05:22
......!!!!!!!!...................................
**** What is your result?
......!!!!!!!!...................................
15:05:44 ln |t^2 -t +2| +C
.........................................
15:05:45
......!!!!!!!!...................................
**** What substitution did you use and what was the integral after substitution?
......!!!!!!!!...................................
15:06:28 u= t^2 -t +2 du = 2t -1 Integral after substitution: int ((du/dt)/u)
.........................................
15:06:29
......!!!!!!!!...................................
**** Query problem 6.1.13 (was 6.1.32) integral of 1 / (`sqrt(x) + 1)
......!!!!!!!!...................................
15:07:42 u = x + 1 du = 1 int u^-1/2 = 2u^1/2 +C = 2 sqrt(u) + C = 2 sqrt(x+1) +C
.........................................
15:07:43
......!!!!!!!!...................................
**** What is your result?
......!!!!!!!!...................................
15:07:52 = 2 sqrt(x+1) +C
.........................................
15:07:52
......!!!!!!!!...................................
**** What substitution did you use and what was the integral after substitution?
......!!!!!!!!...................................
15:08:05 u = x + 1 du = 1 Integral after substitution: int u^-1/2
.........................................
15:08:06
......!!!!!!!!...................................
**** If you let u = `sqrt(x) + 1 then what is du and, in terms of u, what is x?
......!!!!!!!!...................................
15:10:22 u = sqrt(x) +1 du= .5 x^(-.5) x^.5 = u - 1 x = (u-1)^2
.........................................
15:10:22
......!!!!!!!!...................................
**** If you solve du = 1 / (2 `sqrt(x)) dx for dx, then substitute your expression for x in terms of u, what do you finally get for dx?
......!!!!!!!!...................................
15:14:58 I'm not sure if I understand the question correctly. If you solve du = 1 / (2 `sqrt(x)) dx for dx, then you get dx = 2 du / sqrt(x) Substituting (u-1)^2 in for x, you get: dx = 2 du / sqrt((u-1)^2) = 2 du / (u-1) = dx
.........................................
15:14:58
......!!!!!!!!...................................
**** What therefore will be your integrand in terms of u and what will be your result, in terms of u?
......!!!!!!!!...................................
15:20:08 int ((2 du) / (u-1)) = 2 int ((u-1)^(-1)) = 2 ln |u -1| = 2 ln | ((sqrt(x) +1)-1) | = 2 ln | sqrt x| I don't know whether or not this answer is correct. This query program is showing up as very different than the program for assignments 1-13. It's not giving me the correct solutions after I submit my answers, so I have no clue if my answers are right or wrong, and I'd like to know the correct way to solve these problems so I won't make the same mistakes again in future problems.
.........................................
15:20:09
......!!!!!!!!...................................
**** What do you get when you substitute `sqrt(x) + 1 for u into this final expression?
......!!!!!!!!...................................
15:20:46 2 ln | sqrt(x) + 1 -1 | +C = 2ln | sqrtx | + C
.........................................
15:20:47
......!!!!!!!!...................................
**** query problem 6.1.56 (was 6.1.46) area bounded by x (1-x)^(1/3) and y = 0
......!!!!!!!!...................................
15:26:41 u = 1-x du = -1dx x = (1-u) - int [0,1] (1-u)u^(1/3) -int (u^1/3 - u^4/3) -[3/4 u^(4/3) - (3/7)u^(7/3)) + C [0,1] - [3/4 - 3/7) - 9 /28 I think that this answer is wrong because clearly the area is not negative. Maybe it should just be 9/28.
.........................................
15:26:43
......!!!!!!!!...................................
**** What is the area?
......!!!!!!!!...................................
15:27:19 I got - 9/28, but it may be + 9/28, or 9/28 may not be right at all, regardless of it being positive or negative.
.........................................
15:27:20
......!!!!!!!!...................................
**** What integral did you evaluate to obtain the area?
......!!!!!!!!...................................
15:27:48 the integral of u^(1/3) - u^(4/3)
.........................................
15:27:49
......!!!!!!!!...................................
**** What substitution did you use to evaluate the integral?
......!!!!!!!!...................................
15:28:05 u = 1-x du = -1 dx x = 1-u
.........................................
15:28:05
......!!!!!!!!...................................
**** Query problem 6.1.64 P = int(1155/32 x^3(1-x)^(3/2), x, a, b).
......!!!!!!!!...................................
15:40:53 a) between 0 and 25% [0, .25] int ( 1155/32 x^3 (1-x)^(3/2) u = 1-x du = -1 x = 1-u x^3 = (1-u)^3 = (-u^3 + 3u^2 - 3u +1) -1155/32 int ((-u^3 + 3U^2 - 3u +1) u^(3/2)) -1155/32 int ((-u^(9/2) + 3u^(7/2) - 3u^(5/2) + u^(3/2))) -1155/32 [ (-2/11u^(11/2) + (2/3)u^(9/2) - (6/7)u^(7/2) + (2/5)u^(5/2)] -1155/32 (-(2/11)(1-x)^(11/2) + (2/3)(1-x)^(9/2) - (6/7)(1-x)^(7/2) + (2/5)(1-x)^(5/2)] -1155/32 [(-.037 + .182677 - .31316 + .1949) - (-2/11 + 2/3 - 6/7 + 2/5)] -1155/32 (.027417 - (32/1155)) -.98958 + 1 = .0104176563 = 1.04% b) between 50% and 100% -1155/32 (-(-.004 + .02946 - .07576 + .0707)) -1155/32 (-(.0204)) .7363125 = 73.6%
.........................................
15:40:54
......!!!!!!!!...................................
**** What is the probability that a sample will contain between 0% and 25% iron?
......!!!!!!!!...................................
15:41:06 a) between 0 and 25% [0, .25] int ( 1155/32 x^3 (1-x)^(3/2) u = 1-x du = -1 x = 1-u x^3 = (1-u)^3 = (-u^3 + 3u^2 - 3u +1) -1155/32 int ((-u^3 + 3U^2 - 3u +1) u^(3/2)) -1155/32 int ((-u^(9/2) + 3u^(7/2) - 3u^(5/2) + u^(3/2))) -1155/32 [ (-2/11u^(11/2) + (2/3)u^(9/2) - (6/7)u^(7/2) + (2/5)u^(5/2)] -1155/32 (-(2/11)(1-x)^(11/2) + (2/3)(1-x)^(9/2) - (6/7)(1-x)^(7/2) + (2/5)(1-x)^(5/2)] -1155/32 [(-.037 + .182677 - .31316 + .1949) - (-2/11 + 2/3 - 6/7 + 2/5)] -1155/32 (.027417 - (32/1155)) -.98958 + 1 = .0104176563 = 1.04%
.........................................
15:41:06
......!!!!!!!!...................................
**** What is the probability that a sample will contain between 50% and 100% iron?
......!!!!!!!!...................................
15:42:03 between 50% and 100% u = 1-x du = -1 x = 1-u x^3 = (1-u)^3 = (-u^3 + 3u^2 - 3u +1) -1155/32 int ((-u^3 + 3U^2 - 3u +1) u^(3/2)) -1155/32 int ((-u^(9/2) + 3u^(7/2) - 3u^(5/2) + u^(3/2))) -1155/32 [ (-2/11u^(11/2) + (2/3)u^(9/2) - (6/7)u^(7/2) + (2/5)u^(5/2)] -1155/32 (-(2/11)(1-x)^(11/2) + (2/3)(1-x)^(9/2) - (6/7)(1-x)^(7/2) + (2/5)(1-x)^(5/2)] -1155/32 (-(-.004 + .02946 - .07576 + .0707)) -1155/32 (-(.0204)) .7363125 = 73.6%
.........................................
15:42:04
......!!!!!!!!...................................
**** What substitution or substitutions did you use to perform the integration?
......!!!!!!!!...................................
15:42:16 u = 1-x du = -1 x = 1-u x^3 = (1-u)^3 = (-u^3 + 3u^2 - 3u +1)
.........................................
15:42:16
......!!!!!!!!...................................
**** Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
15:43:58 I'm still getting used to the new layout of the query program. I don't like not seeing the correct solutions, because I have a feeling many of my answers were incorrect. I can do some of the easier problems, but once they start getting more difficult, I have a much harder time getting the correct answer. I guess I just need more practice. I can understand the examples given in the book, but once I have problems I have to do on my own, lots of times, I don't even know where to begin.
.........................................
......!!!!!!!!...................................
......!!!!!!!!...................................
15:44:05 ok
.........................................
......!!!!!!!!...................................
......!!!!!!!!...................................
15:44:19 ok
.........................................
"