#$&* course 279 2/17 12 Section 2.2*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. t^2 y ' - 9 y = 0, y(1) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t^2 dy = 9 y dy/y = 9/t^2 Int(dy/y ) = Int(9/t^2 dt) Int(dy/y ) = ln|y| Int(9/t^2 dt)=9*Int(1/t^2 dt)=9*Int(t^-2 dt) = 9*(-1/t) = -9/t + c ln|y| = -9/t + c y = e^(-9/t + c) = e^(-9/t)*e^(c) = Ae^(-9/t), for y(1) = 2 2 = Ae^(-9/1) = Ae^(-9) A = 2/(e^-9) = approx. 16,206.1679, so solution is y = 16,206.1679e^(-9/t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. (t^2 + t) y' + (2t + 1) y = 0, y(0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (t^2 + t) dy = -(2t + 1) y dy/y = -(2t + 1)/ (t^2 + t) Int(dy/y ) = Int([-(2t + 1)/ (t^2 + t)] dt) Int(dy/y ) = ln|y| Int([-(2t + 1)/ (t^2 + t)] dt)= -Int([ (2t + 1)/ t*(t+ 1)] dt) using u sub, u = t*(t+ 1), du = (t*(t+ 1)) dt (t*(t+ 1)) = t*(t+1) + t*(t+1) =1*(t+1) + t*(1+0) = (t+1)+t =2t+1, so (t*(t+ 1)) dt = numerator -Int(1/u du) = -ln|u| + c, so we get Int([-(2t + 1)/ (t^2 + t)] dt) = -ln| (t^2+ t)| +c ln|y| = -ln| (t^2+ t)| +c y = t^2+t+e^c = t^2+t+A, for y(0) = 1 1 = 0^2+0+A A=1, so final soln. y = t^2+t+1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. y ' + sin(3 t) y = 0, y(0) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dy = sin(3 t) y dy/y = sin(3t) Int( dy/y ) = ln|y| Int( sin(3t) dt ) = -cos(3t)/3 + c ln|y| = -cos(3t)/3 + c y = e^(-cos(3t)/3 + c) =Ae^(-cos(3t)), so general soln.. y = Ae^(-cos(3t)) Init conditions y(0) = 2 2 = Ae^(-cos(3*0)) = Ae^(-1) A = 2/(e^(-1) = approx. 5.4366 so y(t) = 5.4366e^(-cos(3t)) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Match each equation with one of the direction fields shown below, and explain why you chose as you did. y ' - t^2 y = 0 y = t^2*y, seems to be E Slope = t^2*y, would be 0 along t and y axis because of either t or y values being equal to zero. Because t is squared either moving in Quad 3 and 4 slope is neg because of neg y value, but as fn approaches y axis slope is decreasing. Then if that is so then in Quads 1 and 2 would be increasing under same logic( there is no neg values for t because its squared.). #$&* y ' - y = 0 **** y = y, seems to be A Slope = y, so slope is only dependent on y value. Giving us horizontal lines of slope that are constant. Only place where slope is 0 would be along x axis. #$&* y' - y / t = 0 **** y = y/t, seems C Slope = y/t, would be 0 along t axis because y values being equal to zero. Because t is in the denominator slope approaches limit of 1 as t approaches zero. When fn moves away from y axis but keeps the same y value (straight line moving to left or right on graph) slope would decrease because t value gets greater. Same goes for keeping the same t value and either moving in pos or neg y direction (straight line up or down graph) #$&* y ' - t y = 0 **** y = t*y, seems to be B Slope = t*y, would be 0 along t or y axis because y or t values would be equal to zero. When fn moves away from y axis but keeps the same y value (straight line moving to left or right on graph) slope would increase in Quad 1 and 3( y and t are both neg in Quad 3 thats why slope is pos) . Slope is neg for Quad 2 and 4 because one of axis values is neg while the other is pos. #$&* y ' + t y = 0 **** y = -(t*y), seems to be F Slope = t*y, would be 0 along t or y axis because y or t values would be equal to zero. This is the same as previous question but with neg sign in front of expression (t*y) then slope is pos in Quad 2 and 4 and neg in 1 and 3. Approaches a value of as fn approaches y and t axis #$&*
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 7. The equation y ' - y = 2 is first-order linear, but is not homogeneous. If we let w(t) = y(t) + 2, then: What is w ' ? **** #$&* What is y(t) in terms of w(t)? **** #$&* What therefore is the equation y ' - y = 2, written in terms of the function w and its derivative w ' ? **** #$&* Now solve the equation and check your solution: Solve this new equation in terms of w. **** #$&* Substitute y + 2 for w and get the solution in terms of y. **** #$&* Check to be sure this function is indeed a solution to the equation. **** #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: What is w ' ? This derivative, by the Chain rule, is dw / dt = y ' (t) * w ' ( y (t) ) y(t)*(y(t)+2) = y(t)*(y(t) + 2) = y(t)*(y(t)+0) w(t) = y(t)^2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 8. The graph below is a solution of the equation y ' - b y = 0 with initial condition y(0) = y_0. What are the values of y_0 and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_0 = 1 b = 2.5/1 = 2.5
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!