#$&* course 279 2-17 1 Solve each equation:*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 2. y ' + t y = 3 t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: where p(t) = t and equation is y + ty = 3t we mult by integrating constant, e^(Int( t dt) = e^(t^2/2) e^(t^2/2)y + e^(t^2/2)ty = 3t e^(t^2/2), we can show (e^(t^2/2)y) = e^(t^2/2)y + e^(t^2/2)ty ( e^(t^2/2)y) = using product rule = e^(t^2/2)*y + (e^(t^2/2))*y (e^(t^2/2)) is composite fn equal to t* e^(t^2/2)) = e^(t^2/2)*y + e^(t^2/2)t*y, now we put into the form ( e^(t^2/2))y) = 3t e^(t^2/2), so taking integral of both sides e^(t^2/2))y = Int( 3t e^(t^2/2)dt) = 3Int(te^(t^2/2))dt) = 3 e^(t^2/2)+ c, we can divide out e^t y = 3 + Ce^(-t^2/2) Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3. y ' - 4 y = sin(2 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: where p(t) = -4 and equation is y - 4y = 3t we mult by integrating constant, e^(Int( -4 dt) = e^(-4t) e^(-4t)y + e^(-4t)ty = sin(2t) e^(-4t), we can show (e^(-4t)y) = e^(t^2/2)y - 4e^(-4t) y ( e^(-4t)y) = using product rule = e^(t^2/2)*y + (e^(-4t))*y (e^(-4t)) is composite fn equal to -4* e^(-4t)) = e^(-4t)*y + -4 e^(-4t)t*y, now we put into the form ( e^(-4))y) = sin(2t) e^(-4t), so taking integral of both sides e^(-4t)y = Int(sin(2t) e^(-4t) dt) Int(sin(2t) e^(-4t) dt) = (1/20)e^(-4t)(-4sin(2t) -2 cos(2t) ) +c y = (-4sin(2t) -2 cos(2t) )/20 + C/e^(-4t) = (-4sin(2t) -2 cos(2t) )/20 + Ce^(-4t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 4. y ' + y = e^t, y (0) = 2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: where p(t) = 1 and equation is y + p(t)y = e^t we mult by integrating constant, e^(Int( p(t) dt) = e^(t) e^(t)y + e^(t)y = e^(t)*e^(t), we can show (e^(t)y) = e^(t)y + e^(t)y (e^(t)y) = using product rule = e^t*y + (e^t)*y = e^t*y + e^t*y, now we put into the form (e^(t)y) = e^(t)^2 = e^(2t), so taking integral of both sides e^(t)y = Int(e^2t dt) = (1/2)e^(2t) + c, we can divide out e^2t y = (1/2)e^(t) + Ce^-t Now for y(0) = 2, we get 2 = (1/2)e^(0) + Ce^(-0) =(1/2) + C C = 1.5, so we end up with.. y = (1/2)e^(t) + 1.5e^-t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 5. y ' + 3 y = 3 + 2 t + e^t, y(1) = e^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: where p(t) = 3 and equation is y + 3y = 3 + 2 t + e^t we mult by integrating constant, e^(Int( 3 dt) = e^(3t) e^(3t)y + e^(3t)y = 3e^(3t) + 2 t e^(3t) + e^te^(3t), we can show (e^(3t)y) = e^(3t)y + e^(3t)y ( e^(3t)y) = using product rule = e^(3t)*y + (e^(3t))*y (e^(3t)) is composite fn equal to 3* e^(-4t)) = e^(3t)*y + 3 e^(3t)t*y, now we put into the form ( e^(3t))y) = 3e^(3t) + 2 t e^(3t) + e^te^(3t), so taking integral of both sides e^(3t)y = Int(3e^(3t) + 2 t e^(3t) + e^te^(3t) dt) Int(3e^(3t) + 2 t e^(3t) + e^te^(3t) dt) = Int(3e^(3t) dt) + Int(2te^(3t) dt) + . Int(3e^(3t) dt) = e^(3t) Int(2 t e^(3t) dt), using integration by parts u = 2t, u = 2 dt, v = e^(3t), v = (e^(3t))/3 Int(2 t e^(3t) dt) = uv - Int(uv dt) =2t*(e^(3t)/3) - Int(2*(e^(3t)/3) dt) Int(2*(e^(3t)/3) dt) = Int((2/3)e^(3t) dt) =2/9e^(3t), so final soln is Int(2t*(e^(3t)/3) dt) = (2te^(3t))/3 - 2/9e^(3t) =2e^(3t)((3t - 1)/9) Int(e^te^(3t) dt) =Int(e^(4t) dt), using u sub, u = 4x, du = 4 dt Int( e^(u)/4 du) = e^(u)/4 = e^(4t)/4, So our final integral for right side is . Int(3e^(3t) + 2 t e^(3t) + e^te^(3t) dt) = e^(3t) + 2e^(3t)((3t - 1)/9) + e^(4t)/4 + C e^(3t)y = e^(3t) + 2e^(3t)((3t - 1)/9) + e^(4t)/4 + C y = 1 + ((6t - 2)/9) + e^(t)/4 + Ce^(-3t), for y(1) = e^2 e^(2) = 1 + ((6 - 2)/9) + e^(1)/4 + Ce^(-3) = 13/9 + e/4 + Ce^(-3) e^2 - (13/9) - (e/4) = Ce^(-3) e^2 - (13/9) - (e/4) = approx. 5.265 C = 5.265/e^(-3) = approx. 105.7512, so our final answer is y = 1 + ((6t - 2)/9) + e^(t)/4 + 105.75e^(-3t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. The general solution to the equation y ' + p(t) y = g(t) is y = C e^(-t^2) + 1, t > 0. What are the functions p(t) and g(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = -2t where e^(Int(p(t) dt)) = e^(Int(-2t dt)) Int(-2t dt) = -2*Int( t dt) = -2*(t^2/2 + c) = -t^2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................