query 7

#$&*

course Phy 2479

3/6 3

Query 07 Differential Equations*********************************************

Question: 3.4.2. Solve the equation y ' = 2 t y ( 1 - y), with y(0) = -1, as a Bernoulli equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

change of dependent variable v = y^-1, v(0) = y(0)^-1 = -1

v’ - 1(-2tv) = -1(-2t)

v’ + 2tv = 2t, linear nonhomgenious mut thru by e^(Int(2t)) = e^(t^2)

e^(t^2)v’ + 2te^(t^2)v = 2te^(t^2)

e^(t^2)v = Int(2te^(t^2) dt ), u = t^2, du = 2t

Int(2te^(t^2)dt) = Int( e^(u)du) = e^u = e^(t^2) + C

e^(t^2)v = e^(t^2) + C

v = 1 + Ce^(-t^2)

For v(0) = y(0)^(-1) = -1

v = 1 + C = -1, C = -2

v(t) = 1 - 2e^(-t^2)

y = v^-1 = (1 - 2e^(-t^2))^-1 = 1/(1 - 2e^(-t^2)), will reduce further because of -t^2 but don’t have any time to waste.

y = 1/(1 - 2e^(-t^2))

@& Good.

For reference:

We rearrange the equation to the form

y ' - 2 t y = 2 t y^2.

Letting v = y^m we get

v ' = m y^(m-1) * y '

so that

y ' = 1/m y^(m-1) v '

and since y = v^(1/m)

y ' = 1/m v^( (m - 1) / m).

Substituting for y and y ' we have

1/m v^( (m-1) / m) v ' - 2 t v^(1/m) = 2 t v(2/m).

Multiplying both sides by m v^((1-m) / m) we get

v ' - 2 m t v = 2 m t v^(1/m + 1) .

The v on the right-hand side will 'disappear' if we let 1/m + 1 = 0, so that m = -1. The equation becomes

v ' + 2 t v = -2 t,

now a first-order linear homogeneous equation with integrating factor e^(t^2).

Multiplying by the integrating factor we have

e^(t^2) v ' + 2 t e^(t^2) v = 2 t e^(t^2).

The left-hand side is ( e^(t^2) v) ' so integration of the equation how yields

e^(t^2) v = integral(2 t e^(t^2) dt)

giving us

e^(t^2) v = e^(t^2) + c

v = e^(t^2 + c) / e^(t^2) = 1 + c e^(-t^2).

Since m = - 1, v = y^-1 so

1/y = 1 + c e^(-t^2)

and

y = 1 / (1 + c e^(-t^2)).

The initial condition y(0) = -1 gives us

-1 = 1 / (1 + c e^0) = 1 / (1 + c),

which is easily solved to obtain c = -2.

Thus

y = 1 / (1 - 2 e^(-t^2)).

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 3.4.6. Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

change of dependent variable v = y^(2/3), v(0) = y(0)^(2/3) = -9^(2/3)

v’ + (2/3)(-1)v = (2/3)t

v’ - (2/3)v = (2/3)t, linear nonhomgenious mut thru by e^(Int(-2/3)) = e^((-2/3)t)

e^((-2/3)t)v’ - (2/3)e^((-2/3)t)v = (2/3)t e^((-2/3)t)

e^((-2/3)t)v = Int((2/3)t e^((-2/3)t) dt ), int by parts

Int(((2/3)t e^((-2/3)t) dt) = (2/3)[ te^((-2/3)t) + (3/2)((-3/2)e^((-2/3)t))]

= (2/3)te^((-2/3)t) - (3/2)e^((-2/3)t) + C

@& 3/2 * 3/2 - 9/4*@

e^((-2/3)t)v = (2/3)t e^((-2/3)t) - (3/2) e^((-2/3)t) + C

v = [(2/3)t - (3/2)] + Ce^((2/3)t)

For v(0) = y(0)^(2/3) = -9^(2/3)

v = -(3/2) + C = -9^(2/3), C = (3/2) - 9^(2/3) ????This doesn’t seem right for init

condition????

v(t) = [(2/3)t - (3/2)] + ((3/2) - 9^(2/3))e^((2/3)t)

y = v^(1/3)= (((2/3)t - (3/2)) + ((3/2) - 9^(2/3))e^((2/3)t))^(1/3)

y(t) = (((2/3)t - (3/2)) + ((3/2) - 9^(2/3))e^((2/3)t))^(1/3)

@& We rearrange the equation to the form

y ' - 2 t y = 2 t y^2.

Letting v = y^m we get

v ' = m y^(m-1) * y '

so that

y ' = 1/m y^(1 - m) v '

and since y = v^(1/m)

y ' = 1/m v^( (1 - m) / m) v '.

Substituting for y and y ' we have

1/m v^( (1-m) / m) v ' + p(t) v^(1/m) = q(t) v^(n / m).

Multiplying both sides by m v^( (m - 1) / m) we have

v ' + m p(t) v = q(t) v^(( n + m - 1) / m)

Now, if the v thing on the right-hand side would just go away, the equation would be first-order linear.

We can arrange that. If the exponent (n + m - 1) is zero, then v^((n + m - 1) / m) will be v^0 = 1.

Remember that we haven't specified the value of m. It can be anything.

If we choose m so that n + m - 1 = 0, which requires that m = 1 - n, we will have our linear equation.

So, in a nutshell:

To solve y ' + p(t) y = q(t) y^n:

1. Let v = y^m, where m = 1 - n.

2. The resulting equation will be v ' + m p(t) v = q(t).

3. Solve for v.

4. Plug in y^m for v.

In this case, n = 1/3 so m = 1 - n = 1 - 1/3 = 2/3.

v = y^m = y^(2/3)

The resulting equation is

v ' - 2/3 v = t

This is solved using integrating factor e^(-2/3 t), obtaining

(v e^(-2/3 t) ) ' = t e^(-2/3 t)

Integrating both sides we get

v e^(-2/3 t) = -3/2 t e^(-2/3 t) - 9 / 4 e^(- 2/3 t) + c

so that

v = -3/2 t - 9/4 + c e^(2/3 t).

Since m = 2/3, v = y^(2/3) so

y^(2/3) = -3/2 t - 9/4 + c e^(2/3 t)

and

y = (-3/2 t - 9/4 + c e^(2/3 t))^(3/2)*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 3.4.8. Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y ' = - (y + 1) + t ( y + 1)^(-2) y ' + y + 1 = t ( y + 1)^(-2) y’ + y = t ( y + 1)^(-2) - 1

@& We rearrange this with the substitution u = y + 1, so that u ' = y ', obtaining

u ' = -u + t u^2

then

u ' + u = t u^2.

This is a Bernoulli equation with n = 2.

Let v = u^m = u^(1 - n) = u^(-1).

The equation becomes

v ' - v = t.

Our integrating factor is e^(-t), giving us

(v e^(-t)) ' = t e^(-t).

Integrating both sides

v e^(-t) = -t e^(-t) - e^(-t) + c

so that

v = -t - 1 + c e^t,

u^(-1) = (-t - 1 + c e^t)

u = (-t - 1 + c e^t)^(-1) = 1 / (-t - 1 + c e^t)

and since u = y + 1

y + 1 = 1 / (-t - 1 + c e^t)

y = y + 1 = 1 / (-t - 1 + c e^t) - 1*@

@& You're on the right track with everything. Just a couple of minor glitches.

Check my notes and see if you agree.*@