query 22

#$&*

course Mth 279

4/29 1

Query 22 Differential Equations*********************************************

Question: Find the values for which the matrix

[ t + 1, t; t, t + 1]

pictured as:

is invertible.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I believe that the matrix the way it is set up where the main diagonal is t+1 and the other elements are t, that for any value of t. This is because no matter what t is the matrix would always be reducible to the identity matrix using row reductions and other methods.

Ok, I’ve rethought this one and now see I was worng(I left the previous answer so you can see my mistake). To find the answer to this we first calculate the determinant

det[given matrix] = [(t+1)*(t+1)] - [t*t] = [t^2+2t+1] - [t^2] = 2t + 1

Knowing matrix is invertible only when determinant is not equal to zero, we see this matrix is invertiable for all t EXCEPT t = (-1/2). This is because when t=(-1/2)

det[given matrix] = 2*(-1/2) + 1 = -1 + 1 = 0, which makes matrix un-invertible(not sure real word).

Confidence rating:

.............................................

Given Solution:

------------------------------------------------

Self-critique rating:

@& Good.*@

*********************************************

Question: Find the limit as t -> 0 of the matrix

[ sin(t) / t, t cos(t), 3 / (t + 1); e^(3 t), sec(t), 2 t / (t^2 - 1) ]

pictured as

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

lim t0 = 1 0 3

1 1 0

Note that I had to use l’hopital rule for calculating sin(t)/t, where sin(t)/t = cos(t)/1 (took derivative of sin(t) and t), now it is easy to see as t0 cos(t)1 so we have a limit of 1/1 as t0.

Everything else was fairly standard in regards to finding the limit.

Confidence rating:

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& Very good.*@

*********************************************

Question: Find A ' (t) and A ''(t), where the derivatives are with respect to t and the matrix is

A = [ sin(t), 3 t; t^2 + 2, 5 ]

pictured as

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A’ = cos(t) 3

2t 0

A’’ = -sin(t) 0

2 0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Write the system of equations

y_1 ' = t^2 y_1 + 3 y_2 + sec(t)

y_2 ' = sin(t) y _1 + t y_2 - 5

in the form

y ' = P(t) y + g(t),

where P(t) is a 2 x 2 matrix and y and g(t) are 2 x 1 column vectors.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t^2 3 * y_1 + sec(t) = y_1’

sin(t) t y_2 -5 y_2’

Confidence rating:

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: If

A '' = [1, t; 0, 0]

with

A(0) = [ 1, 1; -2, 1]

A(1) = [-1, 2; -2, 3 ]

then what is the matrix A(t)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I’m confused, this is what I’ve got

A’(t) = Int(A '') = t+c_11 t^2/2 + c_12 = t t^2/2 + C

0+c_21 0+c_22 0 0

A(t) = Int(A’(t)) = t^2/2+c_11 t^3/3 + c_12 = t^2/2 t^3/3 + C

0+c_21 0+c_22 0 0

?????Not sure exactly how to find bottom elements(row 2)????????

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& A'(t) = integral(A(t)) = [t+c_11, t^2 / 2 + c_12; c_21, c_22 ] .

A(0) = [c_11, c_12; c_21, c_22] = [ 1, 1; -2, 1] so

c_11 = 1,

c_12 = 1

c_21 = 2

c_22 = 1

and

A ' (t) = [ t + 1, t^2 / 2 + 1; -2, 1 ]

Integrating once more to find A(t) we get

A(t) = [ t^2 / 2 + t + d_11, t^3 / 6 + t + d_12; -2 t + d_21, t + d_22 ]

A(1) = [3/2 + d_11, 7/6 + d_12; -2 + d_21, 1 + d_22 ] = [-1, 2;-2, 3]

so

3/2 + d_11 = -1

7/6 + d_12 = 2

-2 + d_21 = -2

1 + d_22 = 3

We easily evaluate the d_ij coefficients to obtain our matrix A(t).*@

@& *@