#$&*
course Phy 242
6/15 5
Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.
Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.
*********************************************
Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.
Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:
· The lack of precision of the TIMER program.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
The extent of the accuracy of the TIMER program is about 0.01. Therefore this factor does not have much effect on the discrepancies. I think the problem is lack of precision of human triggering of the TIMER program.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This factor definately plays a role in the discrepancies because humans do not have a precise enough hand-eye coordination. It is not possible to trigger the accurate time to 0.001 of second.
#$&*
· Actual differences in the time required for the object to travel the same distance.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Conditions are roughtly the same for this experiment: length of board, height of board, diameter of ball, and strength of Time required to travel the same distance should not change under these constant conditions. Therefore the discrepancies should not be from this factor.
#$&*
· Differences in positioning the object prior to release.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This should not effect the results too much unless the ball was placed significantly far from the starting mark. If there is no mark at all, then yes, this could affect the results.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
The human eye, along with the finger for triggering, cannot accuractly perceive the exact moment that the ball reaches the end. This is why this is also a major factor of discrepancy.
#$&*
*********************************************
Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?
· The lack of precision of the TIMER program.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Uncertainty of TIMER program shouldnt effect the date until at one hundredth of a second of shorter.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This would be one of the largest contributors to uncertainty in comparison to the others.
#$&*
· Actual differences in the time required for the object to travel the same distance.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
As long as conditions for the experiment are constant, this factor should not greatly contribute to uncertainty.
#$&*
· Differences in positioning the object prior to release.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This factor may slightly contribute to uncertainty.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This should also be one of the biggest contributors to uncertainty along with human triggering.
#$&*
*********************************************
Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.
· The lack of precision of the TIMER program.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
There is little to do about TIMER program, unless there was a way to increase the precision of the program to faster than a hundredth of a second.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Instead of human triggering, I would set up an electronic trigger connected to a sensor for when the ball hits the sensor, the timer program would automatically click.
#$&*
· Actual differences in the time required for the object to travel the same distance.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Little could be done here. Just make sure conditions are the same and the track is smooth so that there are no discrepancies in friction force.
#$&*
· Differences in positioning the object prior to release.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I would put a knotch in the board to ensure the same starting position each run.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
As said before, electronic triggering and sensors are much better and would result in better precision.
#$&*
"
Very good responses. Let me know if you have questions.