#$&* course Mth 164 February 8 1:11 AM Question: `q001. Note that this assignment has 9 activities.
.............................................
Given Solution: The angular position changes by pi/6 radians every second. Starting at angular position 0, the angular positions at t = 1, 2, 3, 4, ..., 12 will be pi/6, 2 pi/6, 3 pi/6, 4 pi/6, 5 pi/6, 6 pi/6, 7 pi/6, 8 pi/6, 9 pi/6, 10 pi/6, 11 pi/6, and 12 pi/6. You might have reduced these fractions the lowest terms, which is good. In any case this will be done in the next problem. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q002. Reduce the fractions pi/6, 2 pi/6, 3 pi/6, 4 pi/6, 5 pi/6, 6 pi/6, 7 pi/6, 8 pi/6, 9 pi/6, 10 pi/6, 11 pi/6, and 12 pi/6 representing the angular positions in the last problem to lowest terms. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: pi/6, 2pi/6 or pi/3, 3pi/6 or pi/2, 4pi/6 or 2pi/3, 5pi/6, 6pi/6 or pi, 7pi/6, 8pi/6 or 4pi/3, 9pi/6 or 3pi/2, 10pi/6 or 5pi/3, 11pi/6 and 12pi/6 or 2pi. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: `aThe reduced fractions are pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 4 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q003. Sketch a circle centered at the origin of an x-y coordinate system, depicting the angular positions pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 4 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi. What are the angular positions of the following points: The point 2/3 of the way along the arc between (0,1) and (-1,0) The point 1/3 of the way along the arc from (0, 1) to (-1,0) The points 1/3 and 2/3 of the way along the arc from (-1,0) to (0,-1) The points 1/3 and 2/3 of the way along the arc from (0, -1) to (0,1)?? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The 2/3 point would be between pi/2 and pi so the 2/3 points would either be 2pi/3 or 5pi/6. The 2/3 point would be 5pi/6. The 1/3 point between pi/2 and pi would be 2pi/3. The points between pi and 3pi/2 are 7pi/6 and 4pi/3. 4pi/3 would be at the 2/3 position and 7pi/6 would be at the 1/3 position. The points between 3pi/2 and 2pi would be 1/3 at 5pi/3 and 2/3 at 11pi/6. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: `aThe points lying 1/3 and 2/3 of the way along the arc between the points (0,1) and (-1,0) are at angular positions 2 pi/3 and 5 pi/6; the point 2/3 of the way between these points is at angular position 5 pi/6. The points lying 1/3 and 2/3 of the way along the arc between the points (-1,0) and (0,1) are at angular positions 7 pi/6 and 4 pi/3. The points lying 1/3 and 2/3 of the way along the arc between the points (0,-1) and (1,0) are at angular positions 5 pi/3 and 11 pi/6. Note that you should be able to quickly sketch and label this circle, which depicts the angles which are multiples of pi/6, whenever you need it. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q004. If the red ant moves at an angular velocity of pi/4 radians every second then what will be its angular position at the end of each of the first 8 seconds? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The ant would be moving pi/4 radians per second so the position would be pi/4, 2pi/4 or pi/2, 3pi/4, 4pi/4 or pi, 5pi/4, 6pi/4 or 3pi/2, 7pi/4 and 8pi/4 or 2pi. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe angular position changes by pi/4 radians every second. Starting at angular position 0, the angular positions will be pi/4, 2 pi/4, 3 pi/4, 4 pi/4, 5 pi/4, 6 pi/4, 7 pi/4, and 8 pi/4. You might have reduced these fractions the lowest terms, which is good.In any case this will be done in the next problem. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q005. Reduce the fractions pi/4, 2 pi/4, 3 pi/4, 4 pi/4, 5 pi/4, 6 pi/4, 7 pi/4, and 8 pi/4 representing the angular positions in the last problem to lowest terms. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: pi/4, 2pi/4 or pi/2, 3pi/4, 4pi/4 or pi, 5pi/4, 6pi/4 or 3pi/2, 7pi/4 and 8pi/4 or 2pi. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: `aThe reduced fractions are pi/4, pi/2, 3 pi/4, pi, 5 pi/4, 3 pi/2, 7 pi/4, and 2 pi. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q006. Sketch a unit circle (i.e., a circle of radius 1) centered at the origin of an x-y coordinate system, depicting the angular positions pi/4, pi/2, 3 pi/4, pi, 5 pi/4, 3 pi/2, 7 pi/4, and 2 pi. What are the angular positions of the following points: The point 1/2 of the way along the arc between (0,1) and (-1,0) The point 1/2 of the way along the arc from (0, -1) to (1,0) The point 1/2 of the way along the arc from (0,-1) to (0, -1)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1/2 point between (0,1) pi/2 and (-1,0) pi would be 3pi/4 1/2 point between (0,-1) 3pi/2 and (1,0) 2pi would be 7pi/4 1/2 point between(0,-1) 3pi/2 and (0,-1) 3pi/2 that is the same positions so there is no halfway point. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: `aThe point lying 1/2 of the way along the arc between the points (0,1) and (-1,0) (the topmost and leftmost points of the circle) is at angular position 3 pi/4. The point lying 1/2 of the way along the arc between the points (0,-1) and (1,0) is at angular position 7 pi/4. The point lying 1/2 of the way along the arc between the points (-1,0) and (0,-1) is at angular position 5 pi/4. These angles are shown in Figure 21. Note that the degree equivalents of the angles are also given. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK I think the last question wasn't stated right because it shows different in the given solution.
.............................................
Given Solution: `aThe angular position changes by pi/3 radians every second. Starting at angular position pi/3, the angular positions after successive seconds will be 2 pi/3, 3 pi/3, 4 pi/3, 5 pi/3, 6 pi/3 and 7 pi/3, which reduce to 2 pi/3, pi, 4 pi/3, 5 pi/3, 2 pi and 7 pi/3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): 2 I am confused. If I am moving pi/3 radians around a circle and my positions are as below: pi/3 x pi/2 2pi/3 x 5pi/6 pi x 7pi/6 4pi/3 x 3pi/2 5pi/3 x 11pi/6 2pi x pi/6 ??? How did the solution give 7pi/3??? ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q008. Where is the angular position 7 pi/3 located? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I don't know where 7pi/3 is on the circle. I thought it stopped at 2pi.
.............................................
Given Solution: `aIf you have not done so you should refer to your figure showing the positions which are multiples of pi/6. On your picture you will see that the sequence of angular positions 2 pi/3, pi, 4 pi/3, 5 pi/3, 2 pi, 7 pi/3 beginning in the first quadrant and moving through the second, third and fourth quadrants to the 2 pi position, then pi/3 beyond that to the 7 pi/3 position. The 7 pi/3 position is therefore identical to the pi/3 position. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ???Where is the figure that the given solution is refering to???
.............................................
Given Solution: `aThe angular position changes by pi/4 radians every second. Starting at angular position pi/3, the angular positions after successive seconds will be pi/3 + pi/4, pi/3 + 2 pi/4, pi/3 + 3 pi/4, pi/3 + 4 pi/4, pi/3 + 5 pi/4, pi/3 + 6 pi/4, pi/3 + 7 pi/4 and pi/3 + 8 pi/4. These fractions must be added before being reduced to lowest terms. In each case the fractions are added by changing each to the common denominator 12. This is illustrated for pi/3 + 3 pi/4: We first multiply pi/3 by 4/4 and 3 pi/4 by 3/3, obtaining the fractions 4 pi/12 and 9 pi/12. So the sum pi/3 + 3 pi/4 becomes 4 pi/12 + 9 pi/12, which is equal to 13 pi/12. The fractions add up as follows: pi/3 + pi/4 = 7 pi/12, pi/3 + 2 pi/4 = 5 pi/6, pi/3 + 3 pi/4 = 13 pi/12, pi/3 + 4 pi/4 = 4 pi/3, pi/3 + 5 pi/4 = 19 pi/12, pi/3 + 6 pi/4 = 11 pi/6, pi/3 + 7 pi/4 = 25 pi/12 and pi/3 + 8 pi/4 = 7 pi / 3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q010. Starting at angular position pi/4 and moving at pi/3 radians / second what will be the resulting positions after each of the first 6 seconds? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: pi/4+pi/3=7pi/12 pi4+2pi/3=11pi/12 pi4+3pi/3=5pi/4 pi4+4pi/3=19pi/12 pi4+5pi/3=23pi/12 pi4+6pi/3=9pi/4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 ********************************************* Question: `q011. Starting at angular position 0, the angular positions at t = 1, 2, 3, 4, ..., 12 will be pi/6, 2 pi/6, 3 pi/6, 4 pi/6, 5 pi/6, 6 pi/6, 7 pi/6, 8 pi/6, 9 pi/6, 10 pi/6, 11 pi/6, and 12 pi/6. So after 12 seconds we will have moved through an arc of 12 pi / 6 radians. Since 12 pi / 6 reduces to 2 pi, we will have moved through an arc of 2 pi radians, and we will be back at our starting point. If we continue to move around the circle for one more second we will have moved, in 13 seconds, through a total angle of 13 pi / 6 radians, and we will be at the same point on the circle as when we had moved through pi/6 radians. Through what total angle will we have moved by the end of each of the next 4 seconds, and at what previously visited point on the circle will we be located at the end of each? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 14pi/6 or 7pi/3 which is pi/3; 15pi/6 which is pi/2; 16pi/6 or8pi/3 which is 2pi/3; 17pi/6 which is 5pi/6. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 ********************************************* Question: `q012. This is an optional challenge question. If we start from angular position 0 and move through 7 pi / 4 radians every second, through what total angle will we have moved and where on the circle will we be at the end of each of the first 4 seconds? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: o would equal to 12pi/12, so each second would be: 12pi/12 + 7pi/4radians = 11pi/4 radians 12pi/12 + 2*7pi/4 radians= 9pi/2 12pi/12 + 3*7pi/4 radians= 25pi/4 12pi/12 + 4*7pi/4 radians = 8pi We will have completed 4 full circles and would be at 48pi/12. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 ------------------------------------------------ Self-critique Rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!