Qa 3

#$&*

course Mth 164

Wednesday, February 18 5:45 PM

Question: `q001. Note that this assignment has 15 activities.

Figure 93 shows the angular positions which are multiples of pi/4 superimposed on a grid indicating the scale relative to the x y coordinate system. Estimate

the y coordinate of each of the points whose angular positions correspond to 0, pi/4, pi/2, 3 pi/4, pi, 5 pi/4, 3 pi/2, 7 pi/4, and 2 pi.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The y coordinates are the following:

0 0

pi/4, 'sqrt(2)/2

pi/2, 0

3pi/4, 'sqrt(2)/2

pi, 0

5pi/4, 'sqrt(-2)/2

3pi/2, -1

7pi/4, 'sqrt(-2)/2

2pi 1

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThe angular positions of the points coinciding with the positive and negative x axes all have y coordinate 0; these angles include 0, pi and 2 pi.

At angular position pi/4 the point of circle appears to be close to (.7,.7), perhaps a little beyond at (.71,.71) or even at (.72,.72).

Any of these estimates would be reasonable.

Note for reference that, to two decimal places the coordinates are in fact (.71,.71).

To 3 decimal places the coordinates are (.707, .707), and

the completely accurate coordinates are (`sqrt(2)/2, `sqrt(2) / 2).

The y coordinate of the pi/4 point is therefore .71.

The y coordinate of the 3 pi/4 point is the same, while the y coordinates of the 5 pi/4 and 7 pi/4 points are -.71.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q002. Figure 31 shows the angular positions which are multiples of pi/6 superimposed on a grid indicating the scale relative to the x y

coordinate system. Estimate the y coordinate of each of the points whose angular positions correspond to 0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 4

pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0 0

pi/6 1/2

pi/3 'sqrt(3)/2

pi/2 1

2pi/3 'sqrt (-3)/2

5pi/6 -1/2

pi 0

7pi/6 'sqrt (-3)/2

4pi/3 -1/2

3pi/2 -1

5pi/3 'sqrt (3)/2

11pi/6 1/2

2pi 0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

The angular positions of the points coinciding with the positive and negative x axes all have y coordinate 0; these angles include 0, pi and 2 pi.

At angular position pi/6 the point on the circle appears to be close to (.9,.5); the x coordinate is actually a bit less than .9, perhaps .87, so perhaps the

coordinates of the point are (.87, .5). Any estimate close to these would be reasonable.

Note for reference that the estimate (.87, .50) is indeed accurate to 2 decimal places.

The completely accurate coordinates are (`sqrt(3)/2, 1/2).

The y coordinate of the pi/6 point is therefore .5.

The coordinates of the pi/3 point are (.5, .87), just the reverse of those of the pi/6 point; so the y coordinate of the pi/3 point is approximately .87.

The 2 pi/3 point will also have y coordinate approximately .87, while the 4 pi/3 and 5 pi/3 points will have y coordinates approximately -.87. The 5 pi/6

point will have y coordinate .5, while the 7 pi/6 and 11 pi/6 points will have y coordinate -.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q003. Make a table of y coordinate vs. angular position for points which lie on the unit circle at angular positions theta which are multiples

of pi/4 with 0 <= theta <= 2 pi (i.e., 0, pi/4, pi/2, 3 pi/4, pi, 5 pi/4, 3 pi/2, 7 pi/4, 2 pi). You may use 2-significant-figure approximations for this

exercise.

Sketch a graph of the y coordinate vs. angular position.

Give your table and describe the graph.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

theta y

0 0

pi/4 'sqrt(2)/2

pi/2 1

3 pi/4 'sqrt(2)/2

pi 0

5 pi/4 'sqrt(-2)/2

3 pi/2 -1

7 pi/4 'sqrt(-2)/2

2 pi 0

The line will start at 0 then curve up to (0,1); then curve down and go through the x axis at pi; it will continue down to (0,-1) and then curve up again to

cross the x axis at 2pi.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThe table is

theta y coordinate

0 0.0

pi/4 0.71

pi/2 1.0

3 pi/4 0.71

pi 0.0

5 pi/4 -0.71

3 pi/2 -1.0

7 pi/4 -0.71

2 pi 0.0.

We note that the slope from (0,0) to (pi/4,.71) is greater than that from (pi/4,.71) to (pi/2,1), so is apparent that between (0,0) and (pi/2,1) the graph is

increasing at a decreasing rate. We also observe that the maximum point occurs at (pi/2,1) and the minimum at (3 pi/2,-1).

The graph starts at (0,0) where it has a positive slope and increases at a decrasing rate until it reaches the point (pi/2,1), at which the graph becomes for

an instant horizontal and after which the graph begins decreasing at an increasing rate until it passes through the theta-axis at (pi, 0). It continues

decreasing but now at a decreasing rate until reaching the point (3 pi/2,1), for the graph becomes for an instant horizontal. The graph then begins

increasing at an increasing rate until it again reaches the theta-axis at (2 pi, 0).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

3

I didn't really explain the increasing and decreasing rates that you did, but I think I had the right idea.

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q004. In terms of the motion of the point on the unit circle, why is it that the graph between theta = 0 and pi/2 increases? Why is that that

the graph increases at a decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I think it would be like driving up a hill. The first quadrant you have to increase in order to arrive at the top of the hill or the y coordinate. Once you

are making your way back down in to the second quadrant you are decreasing or going down but you are picking up speed toward the x axis. Then reaching pi

you are decreasing at an increasing rate until you hit the bottome which 3pi/2. At this point you will need to start increasing at an increasing rate in

order to move through the fourth quadrant to reach 2pi.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

As we move along the unit circle from the theta = 0 to the theta = pi/2 position it is clear that the y coordinate increases from 0 to 1. At the beginning of

this motion the arc of the circle take us mostly in the y direction, so that the y coordinate changes quickly. However by the time we get near the theta =

pi/2 position at the 'top' of the circle the arc is carrying us mostly in the x direction, with very little change in y.

If we continue this reasoning we see why as we move through the second quadrant from theta = pi/2 to theta = pi the y coordinate decreases slowly at first

then more and more rapidly, reflecting the way the graph decreases at an increasing rate. Then as we move through the third quadrant from theta = pi to theta

= 3 pi/2 the y coordinate continues decreasing, but at a decreasing rate until we reach the minimum y = -1 at theta = 3 pi/2 before begin beginning to

increase an increasing rate as we move through the fourth quadrant.

If you did not get this answer, and if you did not draw a sketch of the circle and trace the motion around the circle, then you should do so now and do your

best to understand the explanation in terms of your picture. You should also document in the notes whether you have understood this explanation.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

2

I know I didn't word describe this like in the given solution, but I hope that I have the idea of the movement.

------------------------------------------------

Self-critique Rating:

@&

I liked your description.

*@

2

*********************************************

Question: `q005. The table and graph of the preceding problems describe the sine function between = 0 and theta = pi/2. The sine function can be defined as

follows:

The sine of the angle theta is the y coordinate of the point lying at angular position theta on a unit circle centered at the origin.

We write y = sin(theta) to indicate the value of this function at angular position theta.

Make note also of the definition of the cosine function:

The cosine of the angle theta is the x coordinate of the point lying at angular position theta on a unit circle centered at the origin.

We write x = cos(theta) to indicate the value of this function at angular position theta.

We can also the line tangent function to be

tan(theta) = y / x.

Since for the unit circle sin(theta) and cos(theta) are respectively y and x, it should be clear that tan(theta) = sin(theta) / cos(theta).

Give the following values: sin(pi/6), sin(11 pi/6), sin(3 pi/4), sin(4 pi/3), cos(pi/3), cos(7 pi/6).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

sin(pi/6) we are looking for the y coordinate which would be .5

sin (11pi/6) we are looking fro the y coordinate in the fourth quad which would be -.5

sin (3pi/4) we are looking for te y coordinate in the second quad and would be a .71

sin (4pi/3) we are looking for the y coordinate in the third quad and that would be -.87

cos (pi/3) is the x coordinate in the first quad .5

cos (7pi/6) is the x coordate in the third quad and would be -.87

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

asin(pi/6) is the y coordinate on the unit circle of the point at the pi/6 position. We have seen that this coordinate is .5.

sin(11 pi/6) is the y coordinate on the unit circle of the point at the 11 pi/6 position, which lies in the fourth quadrant and in angular displacement of

pi/6 below the positive x-axis. We have seen that this coordinate is -.5.

sin(3 pi/4) is the y coordinate on the unit circle of the point at the 3 pi/4 position. We have seen that this coordinate is .71.

sin(4 pi/3) is the y coordinate on the unit circle of the point at the 4 pi/3 position, which lies in the third quadrant at angle pi/3 beyond the negative x

axis. We have seen that this coordinate is -.87.

cos(pi/3) is the x coordinate on the unit circle of the point at the pi/3 position, which lies in the first quadrant at angle pi/3 above the negative x axis.

We have seen that this coordinate is .5.

cos(7 pi/6) is the y coordinate on the unit circle of the point at the 7 pi/6 position, which lies in the third quadrant at angle pi/6 beyond the negative x

axis. We have seen that this coordinate is -.87.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q006. Suppose that the angle theta is equal to 2 x and that y = sine (theta). Given values of theta correspond to x = pi/6, pi/3, ..., pi, give

the corresponding values of y = sin(theta).

Sketch a graph of y vs. x. Not y vs. theta but y vs. x.

Do you think your graph is accurate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

pi/6 2x=2*pi/6=pi/3

pi/3 2x=2*pi/3=2pi/3

pi/2 2x=2*pi/2=pi

2pi/3 2x=2*2pi/3=4pi/3

5pi/6 2x=2*5pi/6=5pi/3

pi 2x=2*6pi/6=2pi

so the values of (2x) are

sin(pi/6) = pi/3 = .87

sin(pi/3) = 2pi/3 = .87

sin(pi/2) = pi = 0

sin(2pi/3) = 4pi/3 = -.87

sin(5pi/6) = 5pi/3 = .87

sin(pi) = 2pi = 0

I think my graph is accurate.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

The angles are in increments of pi/6, so we have angles pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6 and pi.

If x = pi/6, then 2x = 2 * pi/6 = pi/3.

If x = pi/3, then 2x = 2 * pi/3 = 2 pi/3.

If x = pi/2, then 2x = 2 * pi/2 = pi.

If x = 2 pi/3, then 2x = 2 * 2 pi/3 = 4 pi/3.

If x = 5 pi/6, then 2x = 2 * 5 pi/6 = 5 pi/3.

If x = pi, then 2x = 2 * pi/6 = 2 pi.

The values of sin(2x) are therefore

sin(pi/3) = .87

sin(2 pi/3) = .87

sin(pi) = 0

sin(4 pi/3) = -.87

sin(5 pi/3) = -.87

sin(2 pi) = 0.

We can summarize this in a table as follows:

x 2x sin(2x)

0 0 0.0

pi/6 pi/3 0.87

pi/3 2 pi/3 0.87

pi/2 pi 0

2 pi/3 4 pi/3 -0.87

5 pi/6 5 pi/3 -0.87

0 2 pi 0.0.

Figures 93 and 77 depict the graphs of y = sin(theta) vs. theta and y = sin(2x) vs. x. Note also that the graph of y = sin(2x) continues through another

complete cycle as x goes from 0 to 2 pi; the incremental x coordinates pi/4 and 3 pi / 4 are labeled for the first complete cycle.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

2

*********************************************

Question: `q007. Now suppose that x = pi/12, 2 pi/12, 3 pi/12, 4 pi/12, etc.. Give the reduced form of each of these x values. Given x = pi/12, pi/6, pi/4,

pi/3, 5 pi/6, ... what are the corresponding values of y = sin(2x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x= reduced 2x y=sin(2x)

pi/12 pi/6 .5

2pi/12 pi/6 pi/3 .87

3pi/12 pi/4 pi/2 1

4pi/12 pi/3 2pi/3 .87

5pi/12 5pi/6 .5

6pi/12 pi/2 pi 0

7pi/12 7pi/6 -.5

8pi/12 2pi/3 4pi/3 -.87

9pi/12 3pi/4 3pi/2 -1

10pi/12 5pi/6 5pi/3 -.87

11pi/12 11pi/6 -.5

12pi/12 pi 2pi 0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

pi / 12 doesn't reduce.

2 pi/12 reduces to pi/6.

3 pi/12 reduces to pi/4.

4 pi/12 reduces to pi/3.

5 pi/12 doesn't reduce.

6 pi/12 reduces to pi/2.

7 pi/12 doesn't reduce

8 pi/12 reduces to 2 pi/3

9 pi/12 reduces to 3 pi/4

10 pi/12 reduces to 5 pi/6

11 pi/12 doesn't reduce

12 pi/12 reduces to pi

Doubling these values and taking the sines we obtain the following table:

x 2x sin(2x)

0 0 0.0

pi / 12 pi/6 0.5

pi/6 pi/3 0.87

pi/4 pi/2 1.0

pi/3 2 pi/3 0.87

5 pi/12 5 pi/6 0.5

pi/2 pi 0.0

7 pi/12 7 pi/6 -0.5

2 pi/3 4 pi/3 -0.87

3 pi/4 3 pi/2 -1.0

5 pi/6 5 pi/3 -0.87

11 pi/12 11 pi/6 -0.5

pi/2 pi -0.0

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

3

??? How can you have a -0???

------------------------------------------------

Self-critique Rating:

@&

-0 is the number you would add to 0 to get 0.

To get 0, you would have to add 0 to 0.

So -0 is just 0.

*@

3

*********************************************

Question: `q008. Given the table of values obtained in the preceding problem, sketch a graph of y vs. x. Describe your graph. By how much does x change as

the function sin(2x) goes through its complete cycle, and how does this compare with a graph of y = sin(x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph begins at 0 then peaks at pi/4 because this reduces to pi/2 which is (0,1)then the graph goes to the -1 at 3pi/4. The graph increases again toward

the x axis at pi.

By saying 2X the cycle is completed twice as fast. A complete cycle for y=sin(x) would be from 0 to 2pi where as a complete cycle for x would be from 0 to

pi.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYour graph should pass through the origin (0,0) with a positive slope. It will have a peak at x = pi/4, pass back through the x-axis at x = pi/2, reach a

minimum at x = 3 pi/4 and return to the x-axis at x = pi.

More detail: The graph of y vs. x passes through the origin (0,0) with a positive slope and increases at a decreasing rate until it reaches a maximum value

at the x = pi/4 point (pi/4,1). The graph is horizontal for an instant and then begins decreasing at an increasing rate, again reaching the x-axis at the x =

pi/2 point (pi/2,0). The graph continues decreasing, but now at a decreasing rate until a reaches its minimum value at the x = 3 pi/4 point (3 pi/4,0). The

graph is horizontal for an instant then begins increasing an increasing rate, finally reaching the point (pi, 0).

The graph goes through its complete cycle as x goes from 0 to pi. A graph of y = sin(x), by contrast, would go through a complete cycle as x changes from 0

to 2 pi. We see that placing the 2 in front of x has caused the graph to go through its cycle twice as fast.

Note that the values at multiples of the function at 0, pi/4, pi/2, 3 pi/4 and 2 pi are clearly seen on the graph. Note in Figure 3 how the increments of

pi/12 are labeled between 0 and pi/4. You should complete the labeling of the remaining points on your sketch.

STUDENT QUESTION Why does it peak at pi/4? I thought Pi/4=sqrt2/2 for sine and pi/2= sine of 1. What idea am I missing?

INSTRUCTOR RESPONSE

The question is about sin(2x) vs. x, and the graph depicts sin(2x) vs. x.

On your table you have a column for x and a column for 2 x. The peak occurs when 2 x = pi / 2. The x value for this line of the table is pi /4 (half the

values of 2 x).

The graph therefore peaks at x = pi / 4.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Okay

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q009. Now consider the function y = sin(theta) = sin(3x). What values must x take so that theta = 3x can take the values 0, pi/6, pi/3, pi/2, ...

?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x (3X) Answer

o 1/3*0= 0

pi/6 1/3*pi/6= pi/18

pi/3 1/3*pi/3= pi/9

pi/2 1/3*pi/2= pi/6

2pi/3 1/3*2pi/3= 2pi/9

5pi/6 1/3*5pi/6= 5pi/18

pi 1/3*pi= pi/3

7pi/6 1/3*7pi/6= 7pi/18

4pi/3 1/3*4pi/3= 4pi/9

3pi/2 1/3*3pi/2= 3pi/6

5pi/3 1/3*5pi/3= 5pi/9

11pi/6 1/3*11pi/6= 11pi/18

2pi 1/3*2pi= 2pi/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

If theta = 3x then x = theta / 3. So if theta = 3x takes values 0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 2 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi

then x takes values 0, 1/3 * pi/6, 1/3 * pi/3, 1/3 * pi/2, 1/3 * 2 pi/3, 1/3 * 5 pi/6, 1/3 * pi, 1/3 * 7 pi/6, 1/3 * 2 pi/3, 1/3 * 3 pi/2, 1/3 * 5 pi/3, 1/3

* 11 pi/6, 1/3 * 2 pi, or 0, pi/18, pi/9, pi/6, 2 pi/9, 5 pi/18, pi/3, 7 pi/18, 4 pi/9, pi/2, 5 pi/9, 11 pi/18, and 2 pi/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

???Instead of 2pi/3 after 7pi/6 shouldn't this be 4pi/3???

------------------------------------------------

Self-critique Rating:

@&

Yes. Very good.

*@

3

*********************************************

Question: `q010. Make a table consisting of 3 columns, one for x, one for theta and one for sin(theta). Fill in the column for theta with the values 0,

pi/6, pi/3, ... which are multiples of pi/6, for 0 <= theta <= 2 pi. Fill in the column under sin(theta) with the corresponding values of the sine function.

Now change the heading of the theta column to 'theta = sin(3x)' and the heading of the sin(theta) column to 'sin(theta) = sin(3x)'. Fill in the x column with

those values of x which correspond to the second-column values of theta = 3x. Then give the first, fifth and seventh rows of your table.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi -0.0

Then if you change the columns it would look like this.

x theta = 3x sin(3x)

0 0 0.0

pi/18 pi/6 0.5

pi/9 pi/3 0.87

pi/6 pi/2 1.0

2 pi/9 2 pi/3 0.87

5 pi/18 5 pi/6 0.5

pi/3 pi 0.0

7 pi/18 7 pi/6 -0.5

4 pi/9 4 pi/3 -0.87

pi/2 3 pi/2 -1.0

5 pi/9 5 pi/3 -0.87

11 pi/18 11 pi/6 -0.5

2 pi/3 2 pi -0.0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThe table originally reads as follows:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi -0.0

After inserting the values for x and changing column headings the table is

x theta = 3x sin(3x)

0 0 0.0

pi/18 pi/6 0.5

pi/9 pi/3 0.87

pi/6 pi/2 1.0

2 pi/9 2 pi/3 0.87

5 pi/18 5 pi/6 0.5

pi/3 pi 0.0

7 pi/18 7 pi/6 -0.5

4 pi/9 4 pi/3 -0.87

pi/2 3 pi/2 -1.0

5 pi/9 5 pi/3 -0.87

11 pi/18 11 pi/6 -0.5

2 pi/3 2 pi -0.0

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

I did get a little mixed up with what column was what for a few minutes.

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q011. Sketch the graph corresponding to your table for sin(3x) vs. x. Does the sine function go through a complete cycle? By how much does x

change as the sine function goes through its complete cycle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you look at y = sinx

(o,o) (pi/2,1) (pi,0) (3pi/2,-1) 2pi,0)

Then y = sine (3x)

(0,0) (pi/6,1) (pi/3,0) (3pi/6,-1) (5pi/3,0)

It does go through a complete cycle. X will change 3 times faster through the cycle.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

Your graph should pass through the origin (0,0) with a positive slope. It will have a peak at x = pi/6, pass back through the x-axis at x = pi/3, reach a

minimum at x = pi/2 and return to the x-axis at x = 2 pi/3.

More detail: The graph of y vs. x passes through the origin (0,0) with a positive slope and increases at a decreasing rate until it reaches a maximum value

at the x = pi/6 point (pi/6,1). The graph is horizontal for an instant and then begins decreasing at an increasing rate, again reaching the x-axis at the x =

pi/3 point (pi/3,0). The graph continues decreasing, but now at a decreasing rate until a reaches its minimum value at the x = pi/2 point (pi/2,0). The

graph is horizontal for an instant then begins increasing an increasing rate, finally reaching the point (2 pi/3, 0).

The graph goes through its complete cycle as x goes from 0 to 2 pi/3. A graph of y = sin(x), by contrast, would go through a complete cycle as x changes from

0 to 2 pi. We see that placing the 3 in front of x has caused the graph to go through its cycle three times as fast.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q012. For the function y = sin(3x), what inequality in the variable x corresponds to the inequality 0 <= theta <= 2 pi?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If we start out with 0<= theta < = 2 pi or y = sinx

with the y=sin(3x) function

0<= 3x <= 2pi

We would then multiply by 1/3 which would be 1/3*0<=1/3*3x<=1/3*2pi or

0<=x<=2pi/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

If theta = 3x then the inequality

0 <= theta <= 2 pi

becomes

0 <=3x <= 2 pi.

If we multiply through by 1/3 we have

1/3 * 0 <= 1/3 * 3x <= 1/3 * 2 pi, or

0 <= x <= 2 pi/3.

In the preceding problem our graph when through a complete cycle between x = 0 and x = 2 pi/3. This precisely correspond to the inequality we just obtained.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q013. For y = sin(theta) = sin(2x - pi/3), what values must x take so that theta = 2x - pi/3 will take the values 0, pi/6, pi/3, pi/2, ... ?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(2x-2pi/3) = 2(x-pi/3)

0 0

pi/6 2(pi/6-pi/3) = 2(pi/3) = 2pi/3

pi/3 2(pi/3-pi/3) = 2(pi) = 2pi

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

If theta = 2x - pi/3 then

2 x = theta + 2 pi/3 and

x = theta/2 + pi/6.

So if theta = 2x - pi/3 takes values

0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 2 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi

then x = theta/2 + pi/6 takes values

0 + pi/6, pi/12 + pi/6, pi/3 + pi/6, pi/4 + pi/6,pi/3 + pi/6, 5 pi/12 + pi/6, pi/2 + pi/6, 7 pi/12 + pi/6,2 pi/6 + pi/6,3 pi/4 + pi/6,5 pi/6 + pi/6,11

pi/12 + pi/6,pi + pi/6,

which are added in the usual manner and reduce to

added and reduced x values: pi/6, pi/3, 5 pi/12, pi/2, 7 pi/12, 2 pi/3, 3 pi/4, 5 pi/6, 11 pi/12, pi, 13 pi/12, 7 pi/6.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I don't understand this whole equation.

@&

Let me know what you do and do not understand about each of the following questions:

Do you understand why we say that

theta = 2x - pi/3?

Now do you understand the following statements:

If theta = 2x - pi/3 then

2 x = theta + 2 pi/3 and

x = theta/2 + pi/6.

Do you understand that to find the values of x for which theta takes values 0, pi/6, pi/3, etc., we could plug these values into the solution

x = theta / 2 + pi / 6?

*@

------------------------------------------------

Self-critique Rating:

0

*********************************************

Question: `q014. Make a table consisting of 3 columns, one for x, one for theta and one for sin(theta).

Fill in the column for theta with the values 0, pi/6, pi/3, ... which are multiples of pi/6, for 0 <= theta <= 2 pi.

Fill in the column under sin(theta) with the corresponding values of the sine function.

Now change the heading of the theta column to 'theta = sin(2x - pi/3)' and the heading of the sin(theta) column to 'sin(theta) = sin(2x - pi/3)'.

Fill in the x column with those values of x which correspond to the second-column values of theta = 2x - pi/3.

Give the first, fifth and seventh rows of your table.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi 0.0

theta = 2 x - pi / 3 for x,

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

Our first table is the same as before. We will always start the table for the sine function in the following manner, leaving our x column blank, and listing

the theta and sin(theta) columns:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi -0.0

Our second table is obtained by solving theta = 2 x - pi / 3 for x, and finding x for each of our listed values of theta. We get the following:

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

This table indicates that the function y = sin(2x - pi/3) goes through a complete cycle, in which y values run from 0 to 1 to 0 to -1 to 0, when the x values

run from pi/3 to 5 pi/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

I admit that I looked at the given answer and this has helped me with the previous question to understand theta.

------------------------------------------------

Self-critique Rating:

0

*********************************************

Question: `q014. Make a table consisting of 3 columns, one for x, one for theta and one for sin(theta).

Fill in the column for theta with the values 0, pi/6, pi/3, ... which are multiples of pi/6, for 0 <= theta <= 2 pi.

Fill in the column under sin(theta) with the corresponding values of the sine function.

Now change the heading of the theta column to 'theta = sin(2x - pi/3)' and the heading of the sin(theta) column to 'sin(theta) = sin(2x - pi/3)'.

Fill in the x column with those values of x which correspond to the second-column values of theta = 2x - pi/3.

Give the first, fifth and seventh rows of your table.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi 0.0

theta = 2 x - pi / 3 for x,

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

Our first table is the same as before. We will always start the table for the sine function in the following manner, leaving our x column blank, and listing

the theta and sin(theta) columns:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi -0.0

Our second table is obtained by solving theta = 2 x - pi / 3 for x, and finding x for each of our listed values of theta. We get the following:

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

This table indicates that the function y = sin(2x - pi/3) goes through a complete cycle, in which y values run from 0 to 1 to 0 to -1 to 0, when the x values

run from pi/3 to 5 pi/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

I admit that I looked at the given answer and this has helped me with the previous question to understand theta.

------------------------------------------------

Self-critique Rating:

#*&!

0

*********************************************

Question: `q014. Make a table consisting of 3 columns, one for x, one for theta and one for sin(theta).

Fill in the column for theta with the values 0, pi/6, pi/3, ... which are multiples of pi/6, for 0 <= theta <= 2 pi.

Fill in the column under sin(theta) with the corresponding values of the sine function.

Now change the heading of the theta column to 'theta = sin(2x - pi/3)' and the heading of the sin(theta) column to 'sin(theta) = sin(2x - pi/3)'.

Fill in the x column with those values of x which correspond to the second-column values of theta = 2x - pi/3.

Give the first, fifth and seventh rows of your table.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi 0.0

theta = 2 x - pi / 3 for x,

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

Our first table is the same as before. We will always start the table for the sine function in the following manner, leaving our x column blank, and listing

the theta and sin(theta) columns:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi -0.0

Our second table is obtained by solving theta = 2 x - pi / 3 for x, and finding x for each of our listed values of theta. We get the following:

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

This table indicates that the function y = sin(2x - pi/3) goes through a complete cycle, in which y values run from 0 to 1 to 0 to -1 to 0, when the x values

run from pi/3 to 5 pi/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

I admit that I looked at the given answer and this has helped me with the previous question to understand theta.

------------------------------------------------

Self-critique Rating:

#*&!#*&!

&#Good work. See my notes and let me know if you have questions. &#