Assignment 1 Query

#$&*

course Mth 277

9/13/2011 @ 3:15 p.m.

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

At the end of this document, after the qa problems (which provide you with questions and solutions), there is a series of Questions, Problems and Exercises.

query_09_1

*********************************************

Question: Sketch the vector from P to Q, write it into standard component form, and find ||PQ||. P=(4,-1) Q=(-3,7).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: (-7i + 8j) which is (-3i - 4i) and (7i - -1j). 10.63 is the magnitude which is sqrt.((-7)^2 + (8)^2).

confidence rating #$&*:ry

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Let u = <-4,3> and v = <2,-1/2>. Find scalars s and t so that s * <0,3> + tu = v.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 1/3(0i + 3j) + (-1/2)(-4i + 3j) = (2i - 1/2j). Since the “first” i component is 0i, any s will still give us 0i. This means that -4i * t has to give us 2i, which means t = -1/2. If t = -1/2, then -1/2 * 3j gives us -1 and ½ j. To get the -1/2 we need for the solution, we must add 1. To get the 1, we multiply 3j by 1/3, which makes our s = 1/3.

confidence rating #$&*:ry

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The equation

s * <0,3> + tu = v

becomes

s * <0, 3> + t * <-4, 3 > = < 2, -1 / 2 >

or

<0, 3s > + <-4 t, 3 t > = <2, -1/2 >.

and finally

<0 - 4 t, 3 s + 3 t > = < 2, -1/2 >.

Since the two vectors are equal if an only if their two components are equal, this is equivalent to the two simultaneous equations

-4 t = 2

3 s + 3 t = -1/2.

The solution of these equations is

t = -1/2, s = 1/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Let u = 4i - 3j, v = -3i + 4j , and w = 6i - 3j. Write the expression ||u|| ||v|| w in standard form.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: sqrt.(4^2 + (-3)^2) = 5, this the magnitude of both u and v. mag.u * mag.v = 25. 25w = 150i -75j.

confidence rating #$&*:y

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

|| u || = sqrt( 4^2 + 3^2) = 5

and

|| v || = sqrt(3^2 + 4^2) = 5

so that

|| u || || v || w = 5 * 5 * w = 25 * (6 i - 3 j ) = 150 i - 75 j.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Let u = 4i + j, v = 4i + 3j, w = -i + 2j. Find a vector of length 3 with the same direction as u - 2v + 2w.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: To make typing this a bit easier, ‘A = u -2v + 2w. ‘A = -6i -j. ||’A|| = sqrt. (36 + 1) = 6.08. u’A = -6/6.08i - 1/6.08j. We multiply this by 3 to get a vector of magnitude 3 in the same direction, so we get -18/6.08i - 3/6.08j.

confidence rating #$&*:y

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

u - 2v + 2w = -6 i - j

so

|| u - 2 v + 2 w || = sqrt(37)

and

( u - 2 v + 2 w ) / || u - 2 v + 2 w || = -6 sqrt(37) / 37 i - sqrt(37) / 37 j

is a unit vector in the directio of u - 2 v + 2 w .

A vector of magnitude 3 in this direction is therefore

3 ( -6 sqrt(37) / 37 * i - sqrt(37) / 37 * j ) =

-18 sqrt(37) / 37 i - 3 sqrt(37) / 37 j

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I realize that putting a decimal in a fraction is not the neatest way to write these problems, but is it actually wrong? If so, I can easily use sqrt. And get the sqrt. Out of the denominator like you did.

------------------------------------------------

Self-critique rating:

@& On this one you should use the square root, and then add an approximation at the end.*@

*********************************************

Question: Show that the vector v = cos(theta)i + sin(theta)j is a unit vector for any angle theta.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: A vector w/ a mag. Of 1 is a unit vector, so we would simply find the magnitude of vector v. ||v|| = sqrt. (cos^2(theta) + sin^2(theta)) which is the sqrt. Of 1, which is of course 1.

confidence rating #$&*:y

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: || v || = sqrt( cos^2(theta) + sin^2(theta) ) = sqrt(1) = 1.

A vector of magnitude 1 is a unit vector.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#