#$&* course Mth 277 9/13/2011 @ 9:35 p.m. If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: v dot w = 4 * 3 + 1 * 2 = 12 + 2 = 14. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): On dot product questions when one vector has a j component and the other vector has a k component, why can/do we multiply j component by k component? I want to leave the above answer as 12, since 1j * 0 = 0 and 2k * 0 = 0. ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: Two vectors are orthogonal if the angle between them is 90 deg, i.e., if and onlye if their dot product is zero. The dot product of these vectors is 5 * 8 - 5 * (-8) + 5 * (-2) = 40 + 40 - 10 = 70. They are not orthogonal. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): bit of a number discrepancy, but you explained that above. ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the angle between v = 2i +3 k and w = -j + 4k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v dot w = ||v||*||w||cos(theta). V dot w = 10, ||v|| = sqrt.13, ||w|| = sqrt. 17. Theta = cos^-1(10/ (sqrt. 13 * sqrt. 17). Theta = cos^-1(.67). Theta = 47.7 degrees. confidence rating #$&*:y ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Since v dot w = || v || || w || cos(theta) we have theta = cos^-1 ( v dot w ) || v || || w || = cos^-1 ( 10 / (sqrt(13) * sqrt( 17) ) = cos^-1 (.67) = 48 degrees, approx., or roughly.8 radians. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find two distinct unit vectors orthogonal to both v = i + 2j -2k and w = i + j - 2k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This one was really tricky for me…all of my work is just guess work to get a dot product = 0, but this thinking is probably wrong to begin with. For example, a vector of (-2i -j + 1k) would give us a dot product equal to zero. confidence rating #$&*:r ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Suppose a i + b j + c k is orthogonal to both. Then the dot product of this vector with each of the given vectors is zero, and we have a + 2 b - 2 c = 0 a + b - 2 c = 0 Subtracting the second equation from the first we get b = 0. With this value of b both our first and our second equation become a - 2 c = 0 so that a = 2 c. Any vector of the form 2c i + c k is therefore orthogonal to our two vectors. Any such vector has magnitude sqrt( (2 c)^2 + c^2) = sqrt( 5 c^2) = sqrt(5) | c |. If c is positive then | c | = c and our vector is (2 c i + c k ) / (sqrt(5) c) = 2 sqrt(5) / 5 i + sqrt(5) / 5 k. If c is negative then | c | = - c and our vector will be (2 c i + c k ) / (- sqrt(5) c) = - 2 sqrt(5) / 5 i - sqrt(5) / 5 k. Our two solution vectors are equal and opposite. Each is a unit vector perpendicular to the two given vectors. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): So, we make a vector composed of variables, do the dot product against both given vectors, add our results. We then simplify, and write a theoretical equation to find the magnitude of our equation composed of variables. The only part I’m still not 100% on is where 2ci + ck came from.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: The work is F dot `ds = ( (6/11)i - (2 / 11) j + (6 / 11) k ) dot (-7 i - 14 j - 7 k ) = -42/11 + 28 / 11 - 42 /11 = 28 / 11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Same method, different numbers. ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!