Assignment 4 Query

#$&*

course Mth 277

9/13/2011 @ 11:22 p.m.

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

At the end of this document, after the qa problems (which provide you with questions and solutions), there is a series of Questions, Problems and Exercises.

query_09_4

*********************************************

Question: Find v X w when v = sin(theta)i + cos(theta)j and w = -cos(theta)i + sin(theta)j (theta is any angle).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The cross product would be -sin(theta)cos(theta) iXi + sin(theta)sin(theta) iXj - cos(theta)cos(theta) jXi + cos(theta)sin(theta) jXj. This is as far as I understand. I don’t see anything combining other than having sin^2(theta) + cos ^2(theta) =1.

confidence rating #$&*:r

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The result is just the vector k:

v X w = ( sin(theta) i + cos(theta) j ) X (-cos(theta) i + sin(theta) j )

= -sin(theta) cos(theta) i X i + sin(theta) sin(theta) i X j - cos(theta) cos(theta) j X i + cos(theta) sin(theta) j X j.

i X i amd j X j are both zero, since sin(theta) = 0 for both of these computations.

i X j = k by the right-hand rule, and likewise j X i . = -k, so the product is

sin(theta) sin(theta) k - cos(theta) cos(theta) (-k) = sin^2(theta) i + cos^2(theta) k = (sin^2(theta) + cos^2(theta) ) * k = k

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I don’t quite see how iXi AND jXj are both 0 since sin(theta) = 0…especially the jXj. Also, I completely overlooked the iXj = k…but I do know this.

------------------------------------------------

Self-critique rating: Much better.

*********************************************

Question: Find sin(theta) where theta is the angle between v = -i + j and w = -i + j + 2k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: ||w X v|| = ||w||*||v|| sin(theta). Sin(theta) = (2i + 2j) / sqrt.6 * sqrt.2. sin(theta) = 0. Theta = 0.

confidence rating #$&*:y

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

|| v X w || = || v || || w || sin(theta) so

sin(theta) = || v X w || / (|| v || || w || ) = || 2 j + 2 i || / (sqrt(2) sqrt(6) ) = 2 sqrt(2) / ( sqrt(2) sqrt(6) ) = 2 / sqrt(6) = 2 sqrt(6) / 6 - sqrt(6) / 3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I think our answers are the same...

------------------------------------------------

Self-critique rating:

*********************************************

Question: Find a unit vector which is orthogonal to both v = 2i - j and w = 2j - k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: After some reviewing on the internet, since I didn’t know the answer to this in the last Query, I now understand the cross products a bit more. u X w = i + 2j + 4k, this vector is perpendicular to our original 2. To make it into a unit vector, we divide by the magnitude. (1/sqrt.21)i + (2/sqrt.21)j + (4/sqrt.21)k.

confidence rating #$&*:y

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

v X w is orthogonal to both v and w.

v X w = i + 2 j +4 k

A unit vector in this direction is

(i + 2 j + 4 k ) / sqrt(1^2 + 2^2 + 4^2) = (i + 2 j + 4 k ) sqrt(21) / 21 .

If we take the dot product of this vector with either of our original vectors we will get zero. You can verify that this vector is indeed a unit vector.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Find the area of the triangle with vertices P(2,0,0), Q(1,1,-1), R(3,1,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: PQ = -i + j -k, ||PQ|| = 1.73. QR = 2i + 3k, ||QR|| = 3.61. PR = i + j + 2k, ||PR|| = 2.45. These magnitudes are the lengths of the sides. This triangle is scalene, so I will use Heron’s formula to calculate area (if I can remember how to apply it correctly) s = (a + b + c) / 2 where a b and c are sides. S = 3.9. A = sqrt.(s(s-a)(s-b)(s-c)) = sqrt.(3.9 * 1.73 * 3.61 * 2.45) = 1.89 units ^2.

confidence rating #$&*:erately.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 8) Determine if each of the following products is a vector, scalar, or not defined at all. Explain why. u X (v X w) , u dot (v dot w), (u X v) dot (w Xr).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: u X (v X w) is a vector that is perpendicular to a vector perpendicular to (v X w). u dot (v dot w) is a scalar used to find the angle between two vectors. (u X v) dot (w X r) would be two vectors being multiplied together, which is just a cross product.

confidence rating #$&*:m pretty sure about the first two answers, but not at all sure about the third one.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Find a number t such that the vectors -i - j, i - (1/2) j + (1/2)k and -2i -2j - 2tk all lie in the same plane.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: I thought on this one for about 20 minutes searching for how to do it. I feel like I need a vector parallel to the resultant vector of the first two vectors, or something close to this idea.

confidence rating #$&*: at all.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& If you didn't pick this up in class, check the present version of this Query for details, but the idea is that the cross product of any two of the vectors is perpendicular to their plane, so the third should be perpendicular to that cross product.*@

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@& Check my notes and let me know if you have any remaining questions.*@