Assignment 18

course Mth 271

018. `query 18

** Query problem 2.5.44 der of 3/(x^3-4) **** What is your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This function can be expressed as f(g(x)) for g(x) = x^3-4 and f(z) = 3 / z. The 'inner' function is x^3 - 4, the 'outer' function is 1 / z.

f'(z) = -3 / z^2 and g'(x) = 3x^2.

f'(g(x)) = -3/(x^3-4)^2 so the derivative of the whole function is

[3 / (x^3 - 4) ] ' = g'(x) * f'(g(x)) = 3x^2 * (-3/(x^3-4)^2) = -9 x^2 / (x^3 - 4)^2.

.............................................

Given Solution:

`a This function can be expressed as f(g(x)) for g(x) = x^3-4 and f(z) = 3 / z. The 'inner' function is x^3 - 4, the 'outer' function is 1 / z.

So f'(z) = -3 / z^2 and g'(x) = 3x^2.

Thus f'(g(x)) = -3/(x^3-4)^2 so the derivative of the whole function is

[3 / (x^3 - 4) ] ' = g'(x) * f'(g(x)) = 3x^2 * (-3/(x^3-4)^2) = -9 x^2 / (x^3 - 4)^2.

DER**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: `q **** Query problem 2.5.62 tan line to 1/`sqrt(x^2-3x+4) at (3,1/2) **** What is the equation of the tangent line?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The derivative is (2x - 3) * -1/2 * (x^2 - 3x + 4) ^(-3/2) .

At (3, 1/2) we get -1/2 (2*3-3)(3^2- 3*3 + 4)^(-3/2) = -1/2 * 3 (4)^-(3/2) = -3/16.

The equation is thus ( y - 1/2) = -3/16 * (x - 3), or y = -3/16 x + 9/16 + 1/2, or y = -3/16 x + 17/16.

.............................................

Given Solution: ok

`a The derivative is (2x - 3) * -1/2 * (x^2 - 3x + 4) ^(-3/2) .

At (3, 1/2) we get -1/2 (2*3-3)(3^2- 3*3 + 4)^(-3/2) = -1/2 * 3 (4)^-(3/2) = -3/16.

The equation is thus ( y - 1/2) = -3/16 * (x - 3), or y = -3/16 x + 9/16 + 1/2, or y = -3/16 x + 17/16.

DER**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q **** Query problem 2.5.68 rate of change of pollution P = .25 `sqrt(.5n^2+5n+25) when pop n in thousands is 12 **** At what rate is the pollution changing at the given population level?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The derivative is .25 [ (n + 5) * 1/2 * (.5 n^2 + 5 n + 25) ^(-1/2) )

= (n+5) / [ 8 `sqrt(.5n^2 + 5n + 25) ]

When n = 12 we get (12+5) / ( 8 `sqrt(.5*12^2 + 5 * 12 + 25) ) = 17 / 100 = .17.

.............................................

Given Solution:

`a The derivative is .25 [ (n + 5) * 1/2 * (.5 n^2 + 5 n + 25) ^(-1/2) )

= (n+5) / [ 8 `sqrt(.5n^2 + 5n + 25) ]

When n = 12 we get (12+5) / ( 8 `sqrt(.5*12^2 + 5 * 12 + 25) ) = 17 / 100 = .17, approx.

DER**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

okay

"

&#Let me know if you have questions. &#