course Mth 151 ¦çŹ’ô–Ózçeý˘Ĺ¶¶˙‹|ˇassignment #014
......!!!!!!!!...................................
10:38:01 3.3.6 rewrite using if then ' all marines love boot camp '.
......!!!!!!!!...................................
RESPONSE --> If it is a picture then it tells a story (Book question) confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:38:10 ** The statement is equivalent to 'If it's a Marine, it loves boot camp' or equivalent. The statement is not equivalent to 'if it is boot camp, then all Marines love it', which is the converse of the original statement. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:38:30 3.3.18 ~p false q false p -> q true
......!!!!!!!!...................................
RESPONSE --> Right confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:39:10 ** Since ~p is false then p is true. Since q is false it follows that p -> q is of the form T -> F, which is false. The conditional is false when, and only when, the antecedent is true and the consequent false. **
......!!!!!!!!...................................
RESPONSE --> Ahh ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:40:12 Query 3.3.36 write in symbols 'If play canceled, then it does not rain.'
......!!!!!!!!...................................
RESPONSE --> ~b -> ~r ( out of the book) confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:40:22 ** If p stands for 'play canceled' and r for 'it rains' then the statement would be p -> ~q. **
......!!!!!!!!...................................
RESPONSE --> not what the question in the book is self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:41:09 Query 3.3.48 q true, p and r false, evaluate and (-r U p) -> p
......!!!!!!!!...................................
RESPONSE --> True *outof the book* confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:41:18 ** The antecedent (~r U p ) would be true, since ~r true and p false. The consequent p would be false. Since the antecedent is true and the consequent false, the conditional is false. **
......!!!!!!!!...................................
RESPONSE --> not what is in the book self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:47:33 Query 3.3.60 truth table for (p ^ q) -> (p U q)
......!!!!!!!!...................................
RESPONSE --> P Q ( P^Q) (PVQ) (P^Q) -> (PVQ) T T T T T T F F T T F T F T T F F F F T Tautology confidence assessment: 2
.................................................
......!!!!!!!!...................................
10:47:44 ** The headings would be p, q ,(p^q), (pUq), (p^q)->(pUq) Row 1 would read T T T T T Row 2 would read T F F T T Row 3 would read F T F T T Row 4 would read F F F F T The common sense of this is that whenever both p and q are true, then the statement 'p or q' must be true. That's what means to say (p ^ q) -> (p U q). The fact that this statement is true is indicated by the last column of the truth table, which has True in every possible case. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:48:35 Query 3.3.72 negation of ' if loving is wrong then I don't want to be right'
......!!!!!!!!...................................
RESPONSE --> If you say I do then you will not be happy for the rest of your life (from the book) confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:48:45 ** The negation has to have the exact opposite truth values of the original statement. It is difficult and confusing to try to negate a conditional. It is much easier to translate the conditional to a disjunction then negate the disjunction. It is easy to negate the disjunction using deMorgan's Laws. Since p -> q is identical to ~p U q, the negation of p -> q is ~ ( ~p U q), which by de Morgan's Law is ~ ~p ^ ~q, or just p ^ ~q. So the negation would ge 'loving you is wrong AND I want to be right. COMMON ERROR AND NOTE: If loving you is wrong, then I want to be right. INSTRUCTOR COMMENT: The negation of a conditional can't be a conditional (a conditional is false in only one case so its negation would have to be false in three cases). **
......!!!!!!!!...................................
RESPONSE --> Not what is in the book) self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:49:47 Query 3.3.90 circuit q parallel [ p in series with ( q par. ~p) ].
......!!!!!!!!...................................
RESPONSE --> Because P and ~P cannot be the same at all times confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:50:11 ** If I'm looking at the same circuit you are the translation would be q U [ p ^ [q U ~p ]] . Since intersection and union each distribute over the other, this would simplify to q U [ ( p ^ q) U ( p ^ ~p) ]. Since p ^ ~p can't be true, this is the same as q U ( p ^ q). Since q U ( p ^ q) is true whenever q is true and false whenever q is false expression is true exactly when q is. So the circuit finally simplifies to just q. You should be able to see by looking at the circuit that current will flow whenever all the q switches are closed. **
......!!!!!!!!...................................
RESPONSE --> Basically I said that except I forgot to simplify it self critique assessment: 3
.................................................