Assignment 4

course Mth 272

¬ÔJ”ÆTÅ{N˜åÂxѵþÀàøåÁº¼ƒÜ“assignment #004

004. `query 4

Applied Calculus II

09-14-2008

......!!!!!!!!...................................

16:26:25

4.6.06 (was 4.5.06) y = C e^(kt) thru (3,.5) and (4,5)

......!!!!!!!!...................................

RESPONSE -->

y= 0.5

y= 5

0.5= Ce^(3*k)

5 = Ce^(4*k)

5 / .5 = C e^(4k) / [ C e^(3k) ]

=10 = e^k

solve for k= 2.3

0.5 = Ce^(2.3 * 3)=Ce^(6.9)

C= 0.0005

y=.0005e^(2.3t)

confidence assessment: 3

.................................................

......!!!!!!!!...................................

16:26:34

Substituting the coordinates of the first and second points into the form y = C e^(k t) we obtain the equations

.5 = C e^(3*k)and

5 = Ce^(4k) .

Dividing the second equation by the first we get

5 / .5 = C e^(4k) / [ C e^(3k) ] or

10 = e^k so

k = 2.3, approx. (i.e., k = ln(10) )

Thus .5 = C e^(2.3 * 3)

.5 = C e^(6.9)

C = .5 / e^(6.9) = .0005, approx.

The model is thus close to y =.0005 e^(2.3 t). **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

16:35:21

4.6.10 (was 4.5.10) solve dy/dt = 5.2 y if y=18 when t=0

......!!!!!!!!...................................

RESPONSE -->

dy/dt = 5.2y= 5.2 dt=(1/y)dy

e^(ln y) = e^(5.2t + C)

y=e^(5.2t + C)

y=e^C*e^(5.2t)

y = X*e^(5.2t).

18= X*e^0

X=18

y =18e^(5.2t)

confidence assessment: 2

.................................................

......!!!!!!!!...................................

16:35:31

The details of the process:

dy/dt = 5.2y. Divide both sides by y to get

dy/y = 5.2 dt. This is the same as

(1/y)dy = 5.2dt. Integrate the left side with respect to y and the right with respect to t:

ln | y | = 5.2t +C. Therefore

e^(ln y) = e^(5.2 t + c) so

y = e^(5.2 t + c). This is the general function which satisfies dy/dt = 5.2 y.

Now e^(a+b) = e^a * e^b so

y = e^c e^(5.2 t). e^c can be any positive number so we say e^c = A, A > 0.

y = A e^(5.2 t). This is the general function which satisfies dy/dt = 5.2 y.

When t=0, y = 18 so

18 = A e^0. e^0 is 1 so

A = 18. The function is therefore

y = 18 e^(5.2 t). **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

16:55:36

4.6.25 (was 4.5.25) init investment $750, rate 10.5%, find doubling time, 10-yr amt, 25-yr amt) New problem is init investment $1000, rate 12%.

......!!!!!!!!...................................

RESPONSE -->

r= 0.105

initial investment= $750

750e^(.105t) = 2*750

e^(.105t) = 2

0.105t = ln(2)

t= 6.9 years doubling time

2nd part t=10 years

750e^0.105*10= $2,143.24

3rd part t=25= $10,353.43

confidence assessment: 3

.................................................

......!!!!!!!!...................................

16:55:45

When rate = .105 we have

amt = 1000 e^(.105 t) and the equation for the doubling time is

750 e^(.105 t) = 2 * 750. Dividing both sides by 750 we get

e^(.105 t) = 2. Taking the natural log of both sides

.105t = ln(2) so that

t = ln(2) / .105 = 6.9 yrs approx.

after 10 years

amt = 750e^.105(10) = $2,143.24

after 25 yrs

amt = 7500 e^.105(25) = $10,353.43 *

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:03:05

4.6.44 (was 4.5.42) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

......!!!!!!!!...................................

RESPONSE -->

p = C*e^(k*x)

p=5

x=300

5 = C*e^(300*k)

p=4

x=400

4= C*e^(400*k)

5/4= C*e^(300*k)/C*e^(400*k)

k = ln(5/4)/(-100)

k = -0.002

C = 5 /e^(300*k)

solve for C

C= 9.8

fn p = 9.8*e^(-.0022*t)

confidence assessment: 3

.................................................

......!!!!!!!!...................................

17:03:12

You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

......!!!!!!!!...................................

RESPONSE -->

ok good

self critique assessment: 3

.................................................

Very good.

&#Let me know if you have questions. &#