course MTH 174 }_j펚assignment #018
......!!!!!!!!...................................
20:13:02 Query problem 11.3.4 (was 10.3.6) Euler y' = x^3-y^3, (0,0), `dx = .2, 5 steps
......!!!!!!!!...................................
RESPONSE --> a) 0 = (0^3 - 0^3)(1/5) next y = 0, x = 1/5 0.008 = (0.2^3 - 0^3)(1/5) next y = 0 + 0.0016, x = 2/5 0.0128 = (0.4^3 - 0(0.008)^3)(1/5) next y = 0.0016 + 0.0128 = 0.0144, x = 3/5 0.0432 = (0.6^3 - 0.0144^3)(1/5) next y = 0.0144 + 0.0432 = 0.576, x = 4/5 0.1024 = (0.8^3 - 0.576^3)(1/5) next y = 0.1024 + 0.576 = 1.6, x = 5/5 So the estimate at of y(1) = 0.16 This is likely an underestimate because the graph is concave up.
.................................................
......!!!!!!!!...................................
20:13:36 what is your estimate of y(1)?
......!!!!!!!!...................................
RESPONSE --> y(1) = approx 0.16
.................................................
......!!!!!!!!...................................
20:14:13 Describe how the given slope field is consistent with your step-by-step results.
......!!!!!!!!...................................
RESPONSE --> The slopes on the slope field are increasing as are the slopes in the results that I calculated.
.................................................
......!!!!!!!!...................................
20:15:43 Is your approximation an overestimate or an underestimate, and what property of the slope field allows you to answer this question?
......!!!!!!!!...................................
RESPONSE --> The approximation is an underestimate due to the graph being concave up as is shown by the slopes of the graph as x gets larger from (0,0)
.................................................
......!!!!!!!!...................................
21:22:27 Query problem 11.3.10 (was 10.3.10) Euler and left Riemann sums, y' = f(x), y(0) = 0
......!!!!!!!!...................................
RESPONSE --> Approximating using Euler's method is the same as using the left Reimann sum. Looking at it from Left Reimann Sum: y0 = f(x0) * `dx y1 = f(x1) * `dx y2 = f(x2) * `dx yn = f(xn-1) * `dx You then add all these up to estimate the integral. Euler's method is using the slope * `dx to get y y1 = y0 + f(x0) * `dx y2 = y1 + f(x1) * `dx = y0 + f(x0) * `dx + f(x1) * `dx So adding all these up you have y0 + f(x0) * `dx + f(x1) * `dx ... yn-1+ f(xn-1) * `dx When f(0) = 0, the y0 goes away and Euler's method is the same as adding up the parts of the left Reimann Sum.
.................................................
......!!!!!!!!...................................
21:22:46 explain why Euler's Method gives the same result as the left Riemann sum for the integral
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
21:45:12 Query problem 11.4.19 (3d edition 11.4.16) (was 10.4.10) dB/dt + 2B = 50, B(1) = 100
......!!!!!!!!...................................
RESPONSE --> dB/dt + 2B = 50, B(1) = 100 dB/dt = 50 - 2B dB/dt = 2(25 - B) integral of dB/(25 - B) = integral of 2 dt ln |25 - B| = 2t + C 25 - B = e^(2t + C) 25 - B = e^2t * e^C Using B(1) = 100 25 - 100 = e^2 * e^C -75 = e^2 * e^C -75/e^2 = e^C 25 - B = e^2t * -75 * e^-2 -B = -75 * e^(2t - 2) - 25 B = 75 * e^(2t - 2) + 25 Double checking equation: B(1) = 75 * e^(2(1) - 2) + 25 = 100
.................................................
......!!!!!!!!...................................
21:46:59 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> B = 75 * e^(2t - 2) + 25
.................................................
......!!!!!!!!...................................
21:47:41 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> The general solution is B = 75 * e^(2t - 2) + 25
.................................................
......!!!!!!!!...................................
21:48:41 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> I factored out 2 and paired it with `dt and divided both sides by (25 - B) to move the B over to be with dB.
.................................................
......!!!!!!!!...................................
21:51:33 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE --> After integrating a solution to the problem is 25 - B = e^2t * e^C -B = e^2t * e^C - 25 B = -e^C * e^2t + 25
.................................................
......!!!!!!!!...................................
22:06:40 Query problem 11.4.40 (3d edition 11.4.39) (was 10.4.30) t dx.dt = (1 + 2 ln t ) tan x, 1st quadrant
......!!!!!!!!...................................
RESPONSE --> t dx/dt = (1 + 2 ln t) tan x 1/tan x dx = (1 + 2 ln t)/t dt 1/(sin x/cos x) = (1 + 2 ln t)/t dt (cos x/sin x) = 1/t + (2 ln t)/t dt Integrating both sides (u = ln t, du/dt = 1/t: ln |sin x| = ln |t| + 2 u^2/2 + C ln |sin x| = ln |t| + ln t * ln t + C sin x = e^(ln |t| + ln t * ln t + C) sin x = e^(ln |t|) * e^(ln t * ln t) * e^C sin x = t * t^2 *e^C
.................................................
......!!!!!!!!...................................
22:06:54 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> x = arcsin (Bt^3)
.................................................
......!!!!!!!!...................................
22:07:37 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> x = arcsin (Bt^3)
.................................................
......!!!!!!!!...................................
22:09:14 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> I divided both sides tan x to move it to the other side of the equation with dx and multiplied both sides by dt to move the dt to be with 1 + 2 ln t.
.................................................
......!!!!!!!!...................................
22:09:45 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE --> ln |sin x| = ln |t| + ln t * ln t + C
.................................................
......!!!!!!!!...................................
22:09:52 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................