#$&* course MTH 277 7/13/2012 320AM If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the standard form equation of the sphere with center (-1,2,4) and radius 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (x-h)^2 + (y-k)^2 + (z-n)^2 = r^2 (x+1)^2 + (y-2)^2 + (z-4)^2 = 4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: A point (x, y, z) is on the given sphere if its distance from (-1, 2, 4) is 2, so that sqrt( (x - (-1))^2 + (y - 2)^2 + (z - 4)^2 ) = 2 and (x + 1)^2 + (y - 2)^2 + (z - 4)^2 = 4. This is the equation of the sphere in one form. Expanding the squares we obtain x^2 + 2 x + 1 + y^2 - 4 y + 4 + z^2 - 8 x + 16 = 4 which we rearrange to the standard form x^2 + 2 x + y^2 - 4 y + z^2 - 8 z + 13 = 0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didn't put the equation in standard form. I got halfway, but didn't expand. I now understand that standard form is when I expand the equation out. I don't understand how you got 13?????????????????? I worked out the solution, but I got 17. (x + 1)^2 + (y - 2)^2 + (z - 4)^2 = 4. x^2 + 2 x + 1 + y^2 - 4 y + 4 + z^2 - 8 x + 16 = 4 x^2 + 2 x + y^2 - 4 y + z^2 - 8 x + 21 = 4 x^2 + 2 x + y^2 - 4 y + z^2 - 8 z + 17 = 0. ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: Completing the squares we obtain (x^2 - 2 x + 1 - 1) + (y^2 - 6 y + 9 - 9) + (z^2 + 12 z + 36 - 36) = 17 which can be written as (x - 1)^2 - 1 + (y - 3)^2 - 9 + (z + 6)^2 - 36 = 17 and finally as (x - 1)^2 + (y - 3)^2 + (z + 6)^2 = 63 This sphere is centered at (1, 3, -6) and has radius sqrt(63) = 3 sqrt(7). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): BAM! oh yeh! ------------------------------------------------ Self-critique rating:3 ********************************************* Question: Find the standard representation and length of PQ when P = (-3,1,4) and Q = (2,-4,-3). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: PQ= <5, -5, -7> ll PQ ll = sqrt(25+25+49)= sqrt(99) = 3(sqrt11) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: PQ = (2 - (-3) ) i + (-4 - 1) j + (-3 - 4) k = 5 i - 5 j - 7 k. || PQ || = sqrt( 5^2 + 5^2 + 7^2) = sqrt(99). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: ********************************************* Question: Find a unit vector in the direction of v = <-1, sqrt(3), 4>. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ll v ll = sqrt(1+3+16) = sqrt(20) = 2sqrt(5) find unit vector [1/2sqrt(5)] * v = < -1/2sqrt(5), sqrt(3)/2sqrt(5), 2/sqrt(5)> confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: || v || = sqrt( 1^2 + sqrt(3) ^ 2 + 4^2 ) = sqrt( 26 ) so a unit vector in the direction of v is v / || v ||= < -1, sqrt(3), 4 > / sqrt(26) = <-sqrt(26) / 26, sqrt(78) / 26, 4 sqrt(26) / 26)> . 4 sqrt(26) / 26 is 2 sqrt(26) / 13. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): the magnitude is sqrt(20). NOT sqrt(26). 1+3+16= 20 NOT 26. How do I simplify my answer??????????? I don't know how to simplify sqrt(3)/2sqrt(5) ------------------------------------------------ Self-critique rating: 3