#$&* course MTH 277 7/13/2012 325AM If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: v dot w = 4 * 3 + 1 * 2 = 12 + 2 = 14. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The given solution is wrong. In a dot product, you multiply all the 'i*'i, 'j*'j and 'k*'k values then add them together. The given solution says to multiply the 'i's and add to 'j*'k. incorrect?????????????????????? ------------------------------------------------ Self-critique rating: 3
.............................................
Given Solution: Two vectors are orthogonal if the angle between them is 90 deg, i.e., if and onlye if their dot product is zero. The dot product of these vectors is 5 * 8 - 5 * (-8) + 5 * (-2) = 40 + 40 - 10 = 70. They are not orthogonal. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Am I doing my math algebra wrong!!??????????????? -8*-5 = 40, but the given vector in the problem set was -5*-10, which equals 50. ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: Since v dot w = || v || || w || cos(theta) we have theta = cos^-1 ( v dot w ) || v || || w || = cos^-1 ( 10 / (sqrt(13) * sqrt( 17) ) = cos^-1 (.67) = 48 degrees, approx., or roughly.8 radians. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The given solution is incorrect. v dot w = <2,0,3> dot <0, -1, 4> = 0+0+12. The given solution says v dot w is 10. This is incorrect ????????????????????? ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: Suppose a i + b j + c k is orthogonal to both. Then the dot product of this vector with each of the given vectors is zero, and we have a + 2 b - 2 c = 0 a + b - 2 c = 0 Subtracting the second equation from the first we get b = 0. With this value of b both our first and our second equation become a - 2 c = 0 so that a = 2 c. Any vector of the form 2c i + c k is therefore orthogonal to our two vectors. Any such vector has magnitude sqrt( (2 c)^2 + c^2) = sqrt( 5 c^2) = sqrt(5) | c |. If c is positive then | c | = c and our vector is (2 c i + c k ) / (sqrt(5) c) = 2 sqrt(5) / 5 i + sqrt(5) / 5 k. If c is negative then | c | = - c and our vector will be (2 c i + c k ) / (- sqrt(5) c) = - 2 sqrt(5) / 5 i - sqrt(5) / 5 k. Our two solution vectors are equal and opposite. Each is a unit vector perpendicular to the two given vectors. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): My two vectors follow the standard for Any vector of the form 2c i + c k is therefore orthogonal to our two vectors. ------------------------------------------------ Self-critique rating:3 ********************************************* Question: Let v = i - j + 4k and w = -i + 3j + 2k. Find cos(theta). Find s such that v is orthogonal to sv - w. Also find t such that v - tw is orthogonal to w YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v dot w = sqrt(1+1+16)*sqrt(1+9+4)*cos(theta) cos(theta) = 4/[sqrt(14)*sqrt(18) theta = 75.4° v dot sv-w = 0 <1, -1, 4> dot [
.............................................
Given Solution: cos(theta) = v dot w / ( || v || || w ||) = 4 / (sqrt(18) sqrt(14) ) = 4 / (12 sqrt(7) ). The condition v orthogonal to s v - w is v dot (s v - w ) = 0 (i - j + 4 k ) dot ( (s - 1) i + (-s + 3) j + (4 s + 2) k ) = 0 which becomes s - 1 + s - 3 + 16 s + 8 = 0 so that 18 s = 4 and s = 4 / 18. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the work performed when a force F = (6/11)i - (2/11)j + (6/11)k is applied to an object moving along the line from P(3,5,-4) to Q(-4,-9,-11). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: PQ = <-7, -14, -7> F dot PQ = -42/11 + 28/11 -42/11 = -56/11 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The work is F dot `ds = ( (6/11)i - (2 / 11) j + (6 / 11) k ) dot (-7 i - 14 j - 7 k ) = -42/11 + 28 / 11 - 42 /11 = 28 / 11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): the given solution is half of what I got. The only reason a force could be negative is if it went in the opposite direction. ------------------------------------------------ Self-critique rating:2