#$&* course MTH 277 7/13/2012 345AM
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Describe the graph of G(t) = (sin t)i + (cos t)j + (4/3)k YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0 _< t _< 2pi x= sin(t) y = cos(t) z = 4/3 sin^2(t) + cos^2(t) = (4/3^)2 x^2 + y^2 = 16/9 r = 4/3 Cylinder centered around the z-axis with a radius of 4/3 units confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Given F(t)= (t)i - 5(e^t)j +(t^3)k, G(t) = ti - (1/t)k and H(t) = (t*sin t)i + (e^-t)j, find H(t) dot [G(t) X F(t)] YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: <(t*sin t) + (e^-t)> dot [
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find a vector function F whose graph is the curve given by the equation x/5 = (y-3)/6 = (z+2)/4. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x = 0 + 5t y = 3 + 6t z = -2 + 4t F(t) = (5t)`i + (3 + 6t)`j + (-2 + 4t)`k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the limit as t -> 2 of ((t^4-2)/(t-2))i + ((t^2-4)/(t^2-2t))j + ((t^2 + 3)e^(t-2))k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: limit as t -> 2 of r(t) = ((t^4-2)/(t-2))i + ((t^2-4)/(t^2-2t))j + ((t^2 + 3)e^(t-2))k limit as t -> 2 of r(t) = limit as t->2 of ((t^4-2)/(t-2))i + limit as t->2 of ((t^2-4)/(t^2-2t))j + limit as t->2 of ((t^2 + 3)e^(t-2))k = 14/0`i + 0/0`j + 7`k In order to find the correct i limit as t->2 of ((t^4-2)/(t-2))i = limit as t -> 2 of (3t^4 - 8t^3 + 2) / (t^2 -4t +4) `i = -14/0`i use L'hopitals rule again limit as t->2 of (12t^3 - 24t^2) / (2t - 4) `i = 0/0 `i use L'Hopitals one last time limit as t -> 2 of (36t^2 - 48t) / 2 = 24`i In order to find the correct `j component use L'Hopitals rule limit as t->2 of ((t^2-4)/(t^2-2t))j = limit as t-> 2 of 2t / (2t - 2) = 2`j Therefore the final answer for the limits as t -> 2 of ((t^4-2)/(t-2))i + ((t^2-4)/(t^2-2t))j + ((t^2 + 3)e^(t-2))k = 24`i + 2`j + 7`k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: How many revolutions are made by the circular helix R(t) = (sin t)i + (cos t)j + (3/4)tk in a vertical distance of 12 units. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: vertical distance is measured by the z-axis, so if z = 12 =3/4t, then t = 16. 16/2pi = 2.55. So roughly 2.5 revolutions. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!