#$&* course Mth 277 745pm 9/12/2012 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Given the position vector of a particle R(t) = (cos t)i + tj + (4 sin t)k, find the particle's velocity and acceleration vectors and then find the speed and direction of the particle at t = pi/2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: R(t) = (cos t)i + tj + (4 sin t)k V(t) = -sin(t)i + j + 4cos(t)k A(t) = -cos(t)i - 4sin(t)k speed = sqrt(V(t)^2) = sqrt(sin^2t + 1 + 16cos^2t) = sqrt{(1-cos2t)/2 + 1 + 16[(1+cos2t)/2]} = sqrt[1/2 - cos2(pi/2) + 9 + 8cos2(pi/2)] = sqrt[9.5 +7cos(pi)] = sqrt(9.5 - 7) =sqrt(2.5) appr= 1.58 units direction = A dot B = ||A|| * ||B|| cos(theta) cos^-1 = theta = [V(t) dot A(t)] / {sqrt[V(t)^2] * sqrt[A(t)^2]} = [(-sinti + 1j + 4costk) * (-costi - 4sintk)] / [sqrt(2.5) * sqrt(cos^2t + 16sin^2t)] = [sin(t)cos(t) - 16sin(t)cos(t)] / (sqrt(2.5) * {sqrt[(1+cos2t)/2 + 16*(1-cos2t)/2]}) = -15sin(t)cos(t) / {sqrt2.5 * sqrt[.5 + cos(pi)/2 + 8 - 8cos(pi)]} since sin2u = 2sinucosu, then 7.5sin2u = 15sinucosu therefore = 7.5sin(pi) / sqrt(2.5) * sqrt(.5 -.5 + 8 + 8) = 0/8.5 therefore cos(theta) = cos^-1 which means that theta equals 90° The velocity is 1.58 units in the direction of 90 degrees. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I am fairly confident in my answer. idk. ------------------------------------------------ Self-critique rating: ********************************************* Question: Find Int(
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find Integral((e^t)*
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the velocity and position vectors given the acceleration vector `A(t) = 4(t^2)i - 2 sqrt(t) j + 5(e^3t)k, initial position R(0) = 2i + j -3k and initial velocity v(0) = 4i + j + 2k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A(t) = 4(t^2)i - 2 sqrt(t) j + 5(e^3t)k V(t) = (4/3)t^3 i - (4/3)t^(3/2) j + (5/3)e^3t k + C_1 V(0) = 0 i - 0 j + 5/3 k + C_1 = 4i + j + 2k C_1 = 4i + j + (1/3)k The velocity vector is: v(t) = [(4/3)t^3 + 4]i - [(4/3)t^(3/2) + 1]j + [(5/3)e^3t + (1/3)] k R(t) = [((t^4)/3 + 4t]i - [(8/15)t^(5/2) + t]j + [(5/9)e^3t + (t/3)] k + C_2 R(0) = 0i - 0j + 5/9k + C_2 = 2i + j -3k C_2 = 2i + j - (32/9)k The position vector is: R(t) = [((t^4)/3 + 4t + 2]i - [(8/15)t^(5/2) + t +1]j + [(5/9)e^3t + (t/3) - (32/9)] k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: F(t) = e^(-kt)i + e^(kt)k. Show that F and F'' are parallel. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F(t) = e^(-kt)i + e^(kt)k F'(t) = -[e^(-kt) / k]i + [e^(kt) / k] 'k for clerification, k is constant and 'k is the z component F""(t) = [e^(-kt)]/(k^2)i + e^(kt)/(k^2)k F and F"" are vectors. The F'' is a scalar multiple of F. The two are parrallel confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!