#$&* course Mth 277 115pm 10/27/2012 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If V(0) = <5,-2,4> and A(0) = <1,3,-9>, what is A_T and A_N at t = 0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a_t = V dot A / sqrt(V) = 5 -6 -36) / sqrt(25 + 4 + 16) = -37 / sqrt(45) = -37sqrt(5) / 15 a_n = ||(v X a)|| / ||v|| = ||<5,-2,4> X <1,3,-9>|| / sqrt(45) = ||<6, -49, 17>|| / 3sqrt(5) = sqrt(36 +2401 + 289) / 3sqrt(5) = sqrt(2726) / 3sqrt(5) = 7.78 units confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: An object moves with a constant angular velocity omega around the circle x^2 + y^2 = r^2 in the xy-plane. Find a parameterization for the circle. Compute the tangential and normal acceleration for the object. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x=rcos(theta) y=rsin(theta) r(t) = rcos(theta)i + rsin(theta)j v(t) = -rsin(theta)i + rcos(theta)j a(t) = -rcos(theta) - rsin(theta) ||v(t)|| = sqrt[r^2sin(theta) + r^2cos(theta)] = r a_t= v(t) dot a(t) / ||v(t)|| = <-rsin(theta)i + rcos(theta)j> dot <-rcos(theta)i - rsin(theta)j> / r = r^2sin(theta)cos(theta) -r^2sin(theta)cos(theta) / r = 0/r = 0 Which makes since because there is constant velocity, acceleration would not be in the tangential direction, but rather the normal direction a_n = ||v X a|| / ||v|| = ||r^2sin(theta) + r^2cos(theta)|| / r = sqrt(r^4) / r = r^2 / r = r Which makes since because for a circle with constant acceleration, r(t) = -a(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Consider the vector function R(t) = <3 sin t, 4t, 3 cos t>. Evaluate V(t) = R'(t), N(t), and A(t) = R''(t) when t = 1. Find the vector projection of A(1) onto V(1). Denote this proj_V(1) (A(1)). Find the vector projection of A(1) onto N(1). Denote this proj_N(1) (A(1)). What is the sum of proj_V(1) (A(1)) and proj_N(1) (A(1)). How does proj_V(1) (A(1)) relate to A_T when t = 1. How does proj_N(1) (A(1)) relate to A_N when t = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: R(t) = <3 sin t, 4t, 3 cos t> R'(t) = <3cos(t), 4, -3sin(t)> R'(1) = <3cos(1), 4, -3sin(1)> A(t) = <-3sin(t), 0, -3cos(t)> A(1) = <-3sin(1), 0, -3cos(1)> T = R'/||R'|| = <3cos(t), 4, -3sin(t)> / sqrt[9cos^2(t) + 16 +9sin^2(t)] = <3cos(t)/5, 4/5, -3sin(t)/5> T' = <(-3/5)sin(t),0,(-3/5)cos(t)> ||T'|| =
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Let B = T X N when T and N are the unit tangent and normal vectors to a curve C with position vector R. Show that dB/ds = T X (dN/ds). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: unit tangent vector is perpendicular to the normal vector. B is orthgonal to these two vectors. To understand use the right-hand rule, where your thumb is B and normal vector is your wrist and your fingers are the tangent vector a_t = v(t) dot a(t) / ||v(t)|| Tangent is the scalar a_n = ||v X a|| / ||v|| Normal is the vector. dB/ds = T X (dN/ds) says to find the rate of change of B with respect to s, you have to find the rate of change of N with respect to s. becuase T is a scalar. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"