#$&* course Mth 277 220pm 10/27/2012 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: div F = del dot F = (x y)_x + (x^2 + y^2)_y = y + 2 y = 3 y, where (x y)_x represents the partial derivative of xy with respect to x, and (x^2 + y^2)_y represents the partial derivative of x^2 + y^2 with respect to y. The curl is defined only for a function of 3 variables, so we express our function as F(x,y) = x y i + (x^2 + y^2) j + 0 k This is of the form F_1 i + F_2 j + F_3 k for F_1 = x y, F_2 = x^2 + y^2 and F_3 = 0. The curl is curl F = del X F = (d_x i + d_y j + d_z k) X (F_1 i + F_2 j + F_3 k) = (F_3_y - F_2_z) i - (F_3_x - F_1_z) j + (F_2_x - F_1_y) k = (0 - 0) i - (0 - 0) j + (2 x - x) k = x k. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK Additional questions will be added soon. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: