#$&* course Mth 277 205pm 10/27/2012 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: The distance increment is based on the 'velocity' function x ' i + y ' j = cos(t) i - sin(t) j, which implies displacement increment `ds = (x ' i + y ' j) dt = cos(t) i - sin(t) j and therefore distance increment `ds = | `ds | = sqrt( x ' ^ 2 + y ' ^ 2 ) dt = sqrt( cos^2(t) + sin^2(t) ) dt = sqrt( 1 ) dt = dt. The function (2 x - 3 y) is expressed in terms of t by (2 sin(t) - 3 cos(t)), so our integral is int ( (2 sin(t) - 3 cos(t) ) dt, t from 0 to pi). Our antiderivative is -2 cos(t) - 3 sin(t), which between t = 0 and t = pi changes from -2 to 2, a change of 4. Thus our line integral has value 4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ********************************************* Question: Evaluate Int[-y dx + 3y dy, C] where C is defined by y^2 = x from the point (1,1) to the point (9,3). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y^2 = x 2y = dx integral of -ydx + 3ydy = integral from 1 to 3 of -y*2y + 3ydy = -2/3*y^3 + 3/2*y^2 from 1 to 3 = -2/3*27 + 3/2*9 - [-2/3 + 3/2] = -16/3 16/3 is the magnitude, a negative sign just shows you the direction of the change confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: First verify that (1, 1) and (9, 3) are on the curve. This is easily verified for the first point, since 1^2 = 1, and for the second, since 3^2 = 9. This curve is part of the parabola x = y^2, which has vertex at the origin and opens to the right. The curve C is part of the 'upper half' of this parabola. If x = y^2, then dx = d(y^2) = 2 y dy. On this curve y changes from 1 to 3 (and x = y^2 changes from 1^2 = 1 to 3^2 = 9). Expressing our integrand -y dx + 3 y dy in terms of y we get -y ( 2 y dy) + 3 y dy = (-2 y^2 + 3 y) dy. Our integral is therefore integral((-2 y^2 + 3 y) dy, y from 1 to 3). Our antiderivative is -2/3 y^2 + 3/2 y^2. Between y = 1 and y = 3 this antiderivative changes from -2/3 + 3/2 to -6 + 27/2, a change of ... &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: Evaluate Int[(x^2 - y^2)dx + x dy, C] where C is the circular path given by x = 2 cos(theta), y = 2sin(theta), 0 <= theta <= 2pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x= 2cos(theta) dx = -2sin(theta)d(theta) y = 2sin(theta) dy = 2cos(theta)d(theta) Integral from 0 to 2pi of (x^2 - y^2)dx + xdy = int from 0 to 2pi of [4cos^2(theta) - 4sin^2(theta)] * [-2sin(theta)d(theta)] + 2cos(theta)*2cos(theta)*d(theta) = Int of 0 to 2pi -8cos^2(theta)sin(theta)d(theta) + 8sin^3(theta)d(theta) + 4cos^2(theta)d(theta) u = cos(theta) du= -sin(theta)d(theta) = 8/3cos^3(theta) at 2pi and 0 + 8*Int from 0 to 2pi of [1-cos^2(theta)]*sin(theta)d(theta) + 4*Int from 0 to 2pi of {[1+cos(2theta)]/2*d(theta) 8/3cos^3(theta) at 2pi and 0 is equal to 0 =8*Int 0 to 2pi of sin(theta) - cos^2(theta)*sin(theta)*d(theta) + Int 0 to 2pi of [2 + 2cos(2theta)*d(theta)] u = cos(theta) du = -sin(theta) = 8cos(theta) + (8/3)cos^3(theta) at 2pi and 0 + Int 0 to 2pi of [2 + 2cos(2theta)*d(theta)] u = 2(theta) du = 2d(theta) (1/2)du = d(theta) = 8cos(theta) + (8/3)cos^3(theta) + 2(theta) + sin(2theta) at 2pi and 0 = -8cos(2pi) + 8/3 + 4pi + 0 + 8 - 8/3 + 0 + 0 = 4pi confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Our parameter here is theta, so our derivatives will be with respect to theta. Thus ' will indicate derivative with respect to theta. On this path we have dx = x ' dTheta = -2 sin(theta) dTheta and dy = y ' dTheta = 2 cos(theta) dTheta Thus (x^2 - y^2) dx = ( 4 cos^2(theta) - 4 sin^2(theta) ) * 2 sin(theta) dTheta = 4 (cos^2(theta) sin(theta) - sin^3(theta)) dTheta and x dy = 2 cos(theta) * 2 cos(theta) dTheta.= 4 cos^2(theta) dTheta Thus our integral becomes integral( 4 (cos^2(theta) sin(theta) - sin^3(theta)) dTheta + 4 cos^2(theta) dTheta , theta from 0 to 2 pi) = integral( 4 (cos^2(theta) sin(theta) - sin^3(theta) + 4 cos^2(theta) ) dTheta , theta from 0 to 2 pi). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK" Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
#$&* course Mth 277 205pm 10/27/2012 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: The distance increment is based on the 'velocity' function x ' i + y ' j = cos(t) i - sin(t) j, which implies displacement increment `ds = (x ' i + y ' j) dt = cos(t) i - sin(t) j and therefore distance increment `ds = | `ds | = sqrt( x ' ^ 2 + y ' ^ 2 ) dt = sqrt( cos^2(t) + sin^2(t) ) dt = sqrt( 1 ) dt = dt. The function (2 x - 3 y) is expressed in terms of t by (2 sin(t) - 3 cos(t)), so our integral is int ( (2 sin(t) - 3 cos(t) ) dt, t from 0 to pi). Our antiderivative is -2 cos(t) - 3 sin(t), which between t = 0 and t = pi changes from -2 to 2, a change of 4. Thus our line integral has value 4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ********************************************* Question: Evaluate Int[-y dx + 3y dy, C] where C is defined by y^2 = x from the point (1,1) to the point (9,3). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y^2 = x 2y = dx integral of -ydx + 3ydy = integral from 1 to 3 of -y*2y + 3ydy = -2/3*y^3 + 3/2*y^2 from 1 to 3 = -2/3*27 + 3/2*9 - [-2/3 + 3/2] = -16/3 16/3 is the magnitude, a negative sign just shows you the direction of the change confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: First verify that (1, 1) and (9, 3) are on the curve. This is easily verified for the first point, since 1^2 = 1, and for the second, since 3^2 = 9. This curve is part of the parabola x = y^2, which has vertex at the origin and opens to the right. The curve C is part of the 'upper half' of this parabola. If x = y^2, then dx = d(y^2) = 2 y dy. On this curve y changes from 1 to 3 (and x = y^2 changes from 1^2 = 1 to 3^2 = 9). Expressing our integrand -y dx + 3 y dy in terms of y we get -y ( 2 y dy) + 3 y dy = (-2 y^2 + 3 y) dy. Our integral is therefore integral((-2 y^2 + 3 y) dy, y from 1 to 3). Our antiderivative is -2/3 y^2 + 3/2 y^2. Between y = 1 and y = 3 this antiderivative changes from -2/3 + 3/2 to -6 + 27/2, a change of ... &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: Evaluate Int[(x^2 - y^2)dx + x dy, C] where C is the circular path given by x = 2 cos(theta), y = 2sin(theta), 0 <= theta <= 2pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x= 2cos(theta) dx = -2sin(theta)d(theta) y = 2sin(theta) dy = 2cos(theta)d(theta) Integral from 0 to 2pi of (x^2 - y^2)dx + xdy = int from 0 to 2pi of [4cos^2(theta) - 4sin^2(theta)] * [-2sin(theta)d(theta)] + 2cos(theta)*2cos(theta)*d(theta) = Int of 0 to 2pi -8cos^2(theta)sin(theta)d(theta) + 8sin^3(theta)d(theta) + 4cos^2(theta)d(theta) u = cos(theta) du= -sin(theta)d(theta) = 8/3cos^3(theta) at 2pi and 0 + 8*Int from 0 to 2pi of [1-cos^2(theta)]*sin(theta)d(theta) + 4*Int from 0 to 2pi of {[1+cos(2theta)]/2*d(theta) 8/3cos^3(theta) at 2pi and 0 is equal to 0 =8*Int 0 to 2pi of sin(theta) - cos^2(theta)*sin(theta)*d(theta) + Int 0 to 2pi of [2 + 2cos(2theta)*d(theta)] u = cos(theta) du = -sin(theta) = 8cos(theta) + (8/3)cos^3(theta) at 2pi and 0 + Int 0 to 2pi of [2 + 2cos(2theta)*d(theta)] u = 2(theta) du = 2d(theta) (1/2)du = d(theta) = 8cos(theta) + (8/3)cos^3(theta) + 2(theta) + sin(2theta) at 2pi and 0 = -8cos(2pi) + 8/3 + 4pi + 0 + 8 - 8/3 + 0 + 0 = 4pi confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Our parameter here is theta, so our derivatives will be with respect to theta. Thus ' will indicate derivative with respect to theta. On this path we have dx = x ' dTheta = -2 sin(theta) dTheta and dy = y ' dTheta = 2 cos(theta) dTheta Thus (x^2 - y^2) dx = ( 4 cos^2(theta) - 4 sin^2(theta) ) * 2 sin(theta) dTheta = 4 (cos^2(theta) sin(theta) - sin^3(theta)) dTheta and x dy = 2 cos(theta) * 2 cos(theta) dTheta.= 4 cos^2(theta) dTheta Thus our integral becomes integral( 4 (cos^2(theta) sin(theta) - sin^3(theta)) dTheta + 4 cos^2(theta) dTheta , theta from 0 to 2 pi) = integral( 4 (cos^2(theta) sin(theta) - sin^3(theta) + 4 cos^2(theta) ) dTheta , theta from 0 to 2 pi). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!