#$&* course mth 152 1:52 11/29 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: GOOD STUDENT SOLUTION: This statement is true. A parallelogram is a quadrilateral with two pairs of parallel sides and a rhombus is a parallelogram with all sides having equal length. All sides of a square have equal length. If a square were not a rhombus then all sides would not be of equal length. It is not true that a rhombus must be a square. The angles of a rhombus do not have to be right angles, while the angles of a square do. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q Query 9.2.10 Consider the statement: 'A parallelogram must be rectangle and a rectangle must be parallelogram ' Is the statement true or false and why? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A parallelogram must be rectangle= False. A rectangle has to have four right angles, a parallelogram can, but does not have to. a rectangle must be parallelogram= True. A rectangle has to have two pairs of parallel lines. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: A parallelogram is a quadrilateral having two pairs of parallel sides. A rectangle is a parallelogram which includes a pair of adjacent sides which meet at a right angle. A rectangle is a parallelogram but a parallelogram is not necessarily a rectangle, so the statement is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q Query 9.2.18 A plane curve is defined by a rubber band with 4 loops. Is the curve simple, closed, both or neither? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Closed but not simple. It is closed because it begins and ends at the same point and is not simple because it intersects itself. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The curve is closed: If you start from any point on the curve, and continue to follow the curve, you end up where you started. The curve is not simple, but intersects itself ('crosses over' itself) at three points. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q Query 9.2.24 A curve consists of an ellipse. Is the region inside the curve convex or not, and why? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Convex. Any line segment drawn would remain completely inside the figure. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The region inside is convex because the line segment connecting any two points is completely inside the figure. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q Query 9.2.48 Consider the triangle ABC. Angle A is 30 degrees more than angle B, which in turn equals angle C What are the measures of the three angles? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: angle B=angle C angle A= angle B + 30 degrees angle A + angle B + anlge C= 180 angle B=x angle C=x angle A=x+30 deg x+x+(x+30)=180 3x+30= 180 -30 -30 3x=150 -- --- 3 3 x=50 angle A=50+30=80 angle B=50 angle C=50 50+50+80=180 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The figure is a triangle so Angle A + Angle B + Angle C = 180 deg. We are also told that angle A is 30 deg more than angle B, so Angle A = Angle B + 30 deg If x is the degree measure of B then angle A has measure x + 30 degrees and angle C has measure x degrees. So we have x + x +30 deg + x = 180 deg 3x + 30 deg = 180 deg 3x = 150 deg x = 50 deg Angle B and Angle C are both equal to x, i.e., to 50 deg. Angle A = 50 deg + 30 deg = 80 deg To check, 80 + 50 + 50 = 180. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q Query Add comments on any surprises or insights you experienced as a result of this assignment. There were no really big surprises. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q Query Add comments on any surprises or insights you experienced as a result of this assignment. There were no really big surprises. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&!