Query2

#$&*

course Phy 121

9/8 5:19pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

002. `ph1 query 2

#$&* delim

*********************************************

Question: Explain how velocity is defined in terms of rates of change.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Velocity is the change in position with respect to the change in clock time.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: Average velocity is defined as the average rate of change of position with respect to clock time.

The average rate of change of A with respect to B is (change in A) / (change in B).

Thus the average rate of change of position with respect to clock time is

ave rate = (change in position) / (change in clock time).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):I understand the concept, but I defined velocity not average velocity.

------------------------------------------------

Self-critique Rating:3

@&

Good, but note that the word 'rate' is essential.

Velocity is the rate of change in position with respect to the change in clock time.

*@

#$&*

*********************************************

Question: Why can it not be said that average velocity = position / clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

That definition is incorrect because it doesn't tell us the change in position or change in clock time. If, for example an object is at 6 meters when the clock time shows 2 seconds, we cannot say that its average velocity is 3m/s because we know nothing about where (if anywhere) the object moved from and how much time (if any) has elapsed.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: The definition of average rate involves the change in one quantity, and the change in another.

Both position and clock time are measured with respect to some reference value. For example, position might be measured relative to the starting line for a race, or it might be measured relative to the entrance to the stadium. Clock time might be measure relative to the sound of the starting gun, or it might be measured relative to noon.

So position / clock time might, at some point of a short race, be 500 meters / 4 hours (e.g., 500 meters from the entrance to the stadium and 4 hours past noon). The quantity (position / clock time) tells you nothing about the race.

There is a big difference between (position) / (clock time) and (change in position) / (change in clock time).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

#$&*

*********************************************

Question: Explain in your own words the process of fitting a straight line to a graph of y vs. x data, and briefly discuss the nature of the uncertainties encountered in the process. For example, you might address the question of how two different people, given the same graph, might obtain different results for the slope and the vertical intercept.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The process involves finding a line that keeps the average distance from each point to the line at a minimum. It involves a good deal of eyeballing and estimation. Once a line is chosen, you can find its y- intercept by estimating where the line intersects the y axis. The slope can be determined by find two distince points on the new line and figuring out rise/run. Armed with y-intercept and slope, you can write the equation for the line in the form y=mx+b where m is slope and b is the y intercept.

Two different people may get different answers since it is not easy to accuarate guage exactly which line truly minimizes average distance from the points to the line. Depending on the size of the graph and the gradations available, different people might estimate different coordinates on there line and different y-intercepts as well. For example if the line on the graph seems to intercept the y axis somewhere between the 1 unit and the 2 units, one person may estimate that as 1.6 while another might say 1.7. Factor in that these two people may have eye-balled their lines in slightly different places and you further add to the uncertainty.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question:

(Principles of Physics and General College Physics students) What is the range of speeds of a car whose speedometer has an uncertainty of 5%, if it reads 90 km / hour? What is the range of speeds in miles / hour?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It can be +/- 5% of 90km/h or 105% of 90km/r down to 95% of 90km/h. For easier math this is:

1.05*90km/h = 94.5 km/h

.95 * 90km/h = 85.5 km/h

The range is 85.5km/h to 94.5km/h

In miles we would convert km to miles by multipling the km by .621miles /km since there are .621 miles in 1 km.

We get 85.5km/h * .621miles/km = 53.1 milee/h Because the km cancels out. Since we only had 2 sig figures this would be approximately 53 miles/h

94.5km/h *.621 miles/hr = 58.7 miles/h or approximately 59 miles/hr.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#$&*

.............................................

Given Solution: 5% of 90 km / hour is .05 * 90 km / hour = 1.8 km / hour. So the actual speed of the car might be as low as 90 km / hour - 1.8 km / hour = 88.2 km / hour, or as great as 90 km / hour + 1.8 km / hour = 91.8 km / hour.

To convert 90 km / hour to miles / hour we use the fact, which you should always know, that 1 inch = 2.54 centimeters. This is easy to remember, and it is sufficient to convert between SI units and British non-metric units.

Using this fact, we know that 90 km = 90 000 meters, and since 1 meter = 100 centimeter this can be written as 90 000 * (100 cm) = 9 000 000 cm, or 9 * 10^6 cm.

Now since 1 inch = 2.54 cm, it follows that 1 cm = (1 / 2.54) inches so that 9 000 000 cm = 9 000 000 * (1/2.54) inches, or roughly 3 600 000 inches (it is left to you to provide the accurate result; as you will see results in given solutions are understood to often be very approximate, intended as guidelines rather than accurate solutions). In scientific notation, the calculation would be 9 * 10^6 * (1/2.54) inches = 3.6 * 10^6 inches.

Since there are 12 inches in a foot, an inch is 1/12 foot so our result is now 3 600 000 *(1/12 foot) = 300 000 feet (3.6 * 10^6 * (1/12 foot) = 3 * 10^5 feet).

Since there are 5280 feet in a mile, a foot is 1/5280 mile so our result is 300 000 * (1/5280 mile) = 58 miles, again very approximately.

So 90 km is very roughly 58 miles (remember this is a rough approximation; you should have found the accurate result).

Now 90 km / hour means 90 km in an hour, and since 90 km is roughly 58 miles our 90 km/hour is about 58 miles / hour.

A more formal way of doing the calculation uses 'conversion factors' rather than common sense. Common sense can be misleading, and a formal calculation can provide a good check to a commonsense solution:

We need to go from km to miles. We use the facts that 1 km = 1000 meters, 1 meter = 100 cm, 1 cm = 1 / 2.54 inches, 1 inch = 1/12 foot and 1 foot = 1 / 5280 mile to get the conversion factors (1000 m / km), (100 cm / m), (1/2.54 in / cm), (1/12 foot / in) and (1/5280 mile / ft) and string together our calculation:

90 km / hr * (1000 m / km) * (100 cm / m) * (1/2.54 in / cm) * (1/12 foot / in) * (1/5280 mile / ft) = 58 mi / hr (again not totally accurate).

Note how the km divides out in the first multiplication, the m in the second, the cm in the third, the inches in the fourth, the feet in the fifth, leaving us with miles / hour.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):I got a diffent answer for calculating 90*.05. I checked this several times, I think it might be a typo.

I also directly converted km to miles by using the conversion factor of 1km=.621 miles. As a runner this conversion is just as natural to me as the inch to centimeter conversion. It aslo is less steps so less chances for me to make a careless mistake in the process.

@&

OK, .05 is 1/20, and 1/20 has a 2 in it, and 2 * 9 = 18 so .05 * 90 = 1.8.

Obviously incorrect, but I believe that was the train of thought that infected my brain when I wrote that.

It's pretty obvious that 5% of 90 would be near 5% of 100, which would be 5. Since 5 * 9 = 45, it's clear that the result would be 4.5.

I was obviously thinking about some other part of the explanation instead of concentrating on the apparantly trivial calculation at hand.

With regard to the .621:

The shortcoming of the .621 factor is that it is not exact, whereas the 2.54 cm = 1 inch conversion is exact. For 3-significant-figure calculations, though, one would work as well as the other.

*@

------------------------------------------------

Self-critique Rating:I think I have the process and concepts down.

#$&*

*********************************************

Question: (Principles of Physics students are invited but not required to submit a solution) Give your solution to the following: Find the approximate uncertainty in the area of a circle given that its radius is 2.8 * 10^4 cm.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I always like to try every problem even if I'm not required to. I have to say I'm stumped here.

Could it be key is in the scientific notation? Does the 10^4 tell us something about the uncertainty of our measurements. Not sure

Let's see what the area comes out to be:

A=pi * (2.8 *10^4cm) ^2

A= pi * 7.8 * 10^8 cm^2

A = 7.8 * 10^8 pi cm^2

This doesn't really clear things up for me. I'll have to punt.

@&

The key here is that 2.8 is uncertain by at least +-.05, since any measurement between 2.75 and 2.849999 will be read as 2.8.

In many circumstances it would be regarded as uncertain by +-0.1, but that depends on circumstances.

.05 is about 2% of 2.8, so the radius is uncertain by at least about 2%.

The squared radius is therefore uncertain by 4%, since a 2% error compounded with a 2% error gives us an error which is only slightly greater than 4%.

The area depending on the squared radius, we conclude that the area is uncertain by +- 4%.

*@

confidence rating #$&*:0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#$&*

.............................................

Given Solution:

** Radius 2.8 * 10^4 cm means that the radius is between 2.75 * 10^4 cm and 2.85 * 10^4 cm.

We regard 2.75 *10^4 cm as the lower bound and 2.85 *10^4 cm as the upper bound on the radius. 2.75 is .05 less than 2.8, and 2.85 is .05 greater than 2.8, so we say that the actual number is 2.8 +- .05.

Thus we express the actual radius as (2.8 +- .05) * 10^4 cm, and we call .05 * 10^4 cm the uncertainty in the measurement.

The area of a circle is pi r^2, with which you should be familiar (if for no reason other than that you used it and wrote it down in the orientation exercises)..

With this uncertainty estimate, we find that the area is between a lower area estimate of pi * (2.75 * 10^4 cm)^2 = 2.376 * 10^9 cm^2 and and upper area estimate of pi * (2.85 * 10^4 cm)^2 = 2.552 * 10^9 cm^2.

The difference between the lower and upper estimate is .176 * 10^9 cm^2 = 1.76 * 10^8 cm^2.

The area we would get from the given radius is about halfway between these estimates, so the uncertainty in the area is about half of the difference.

We therefore say that the uncertainty in area is about 1/2 * 1.76 * 10^8 cm^2, or about .88 * 10^8 cm^2.

Note that the .05 * 10^4 cm uncertainty in radius is about 2% of the radius, while the .88 * 10^8 cm uncertainty in area is about 4% of the area.

The area of a circle is proportional to the squared radius.

A small percent uncertainty in the radius gives very nearly double the percent uncertainty in the squared radius. **

STUDENT COMMENT:

I don't recall seeing any problems like this in any of our readings or assignments to this point

INSTRUCTOR RESPONSE:

The idea of percent uncertainty is presented in Chapter 1 of your text.

The formula for the area of a circle should be familiar.

Of course it isn't a trivial matter to put these ideas together.

STUDENT COMMENT:

I don't understand the solution. How does .176 * 10^9 become 1.76 * 10^8? I understand that there is a margin of error because of the significant figure difference, but don't see how this was calculated.

INSTRUCTOR RESPONSE:

.176 = 1.76 * .1, or 1.76 * 10^-1.

So .176 * 10^9 = 1.76 * 10^-1 * 10^9. Since 10^-1 * 10^9 = 10^(9 - 1) =10^8, we have

.176 * 10^9 = 1.76 * 10^8.

The key thing to understand is the first statement of the given solution:

Radius 2.8 * 10^4 cm means that the radius is between 2.75 * 10^4 cm and 2.85 * 10^4 cm.

This is because any number between 2.75 and 2.85 rounds to 2.8. A number which rounds to 2.8 can therefore lie anywhere between 2.75 and 2.85.

The rest of the solution simply calculates the areas corresponding to these lower and upper bounds on the number 2.8, then calculates the percent difference of the results.

STUDENT COMMENT: I understand how squaring the problem increases uncertainty and I understand the concept of

a range of uncertainty but I am having trouble figuring out how the range of 2.75 * 10^4 and 2.85*10^4 were established

for the initial uncertainties in radius.

INSTRUCTOR RESPONSE:

The key is the first sentence of the given solution:

'Radius 2.8 * 10^4 cm means that the radius is between 2.75 * 10^4 cm and 2.85 * 10^4 cm.'

You know this because you know that any number which is at least 2.75, and less than 2.85, rounds to 2.8.

Ignoring the 10^4 for the moment, and concentrating only on the 2.8:

Since the given number is 2.8, with only two significant figures, all you know is that when rounded to two significant figures the quantity is 2.8. So all you know is that it's between 2.75 and 2.85.

STUDENT QUESTION

I honestly didn't consider the fact of uncertainty at all. I misread the problem and thought I

was simply solving for area. I'm still not really sure how to determine the degree of uncertainty.

INSTRUCTOR RESPONSE

Response to Physics 121 student:

This topic isn't something critical to your success in the course, but the topic will come up. You're doing excellent work so far, and it might be worth a little time for you to try to reconcile this idea.

Consider the given solution, the first part of which is repeated below, with some questions (actually the same question repeated too many times). I'm sure you have limited time so don't try to answer the question for every statement in the given solution, but try to answer at least a few. Then submit a copy of this part of the document.

Note that a Physics 201 or 231 student should understand this solution very well, and should seriously consider submitting the following if unsure. This is an example of how to break down a solution phrase by phrase and self-critique in the prescribed manner.

##&*

** Radius 2.8 * 10^4 cm means that the radius is between 2.75 * 10^4 cm and 2.85 * 10^4 cm.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

I understand this . Because the 2.8 part is really an estimate we have either rounded up from 2.75 or down from 2.85. ???I'm a little curious why in our rounding we aren't using 2.84 as our upper bound since that is the highest number we would round down from???

##&*

We regard 2.75 *10^4 cm as the lower bound and 2.85 *10^4 cm as the upper bound on the radius. 2.75 is .05 less than 2.8,

and 2.85 is .05 greater than 2.8, so we say that the actual number is 2.8 +- .05.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

I get this concept.

##&*

Thus we express the actual radius as (2.8 +- .05) * 10^4 cm, and we call .05 * 10^4 cm the uncertainty in the measurement.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

This makes sense to me.

##&*

The area of a circle is pi r^2, with which you should be familiar (if for no reason other than that you used it and wrote it

down in the orientation exercises).

With this uncertainty estimate, we find that the area is between a lower area estimate of pi * (2.75 * 10^4 cm)^2 = 2.376 *

10^9 cm^2 and and upper area estimate of pi * (2.85 * 10^4 cm)^2 = 2.552 * 10^9 cm^2.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

I understand this too. I guess I just didn't know how to start the problem and missed the key part which was the =/- .5 units (in this case cm) which I know understand

##&*

The difference between the lower and upper estimate is .176 * 10^9 cm^2 = 1.76 * 10^8 cm^2.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

i understand how to get the difference and how to but it into similar scientific notation.

##&*

The area we would get from the given radius is about halfway between these estimates, so the uncertainty in the area is about

half of the difference.

We therefore say that the uncertainty in area is about 1/2 * 1.76 * 10^8 cm^2, or about .88 * 10^8 cm^2.

Note that the .05 * 10^4 cm uncertainty in radius is about 2% of the radius, while the .88 * 10^8 cm uncertainty in area is

about 4% of the area.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

It makes sense that the uncertainty would be double since we are sqauring the radius

##&*

The area of a circle is proportional to the squared radius.

A small percent uncertainty in the radius gives very nearly double the percent uncertainty in the squared radius.

Do you understand what this is saying, and why it is so? If not, tell me what you think you understand, what you are pretty sure you don't understand, and what you think you might understand but aren't sure.

I think I understand the concept.

##&*

If you wish you can submit the above series of questions in the usual manner.

STUDENT QUESTION

I said the uncertainty was .1, which gives me .1 / 2.8 = .4.

INSTRUCTOR RESPONSE

A measurement of 2.8 can be taken to imply a number between 2.75 and 2.85, which means that the number is 2.8 +- .05 and the uncertainty is .05. This is the convention used in the given solution.

(The alternative convention is that 2.8 means a number between 2.7 and 2.9; when in doubt the alternative convention is usually the better choice. This is the convention used in the text.

It should be easy to adapt the solution given here to the alternative convention, which yields an uncertainty in area of about 8% as opposed to the 4% obtained here).

Using the latter convention, where the uncertainty is estimated to be .1:

The uncertainty you calculated would indeed be .04 (.1 / 2.8 is .04, not .4), or 4%. However this would be the percent uncertainty in the radius.

The question asked for the uncertainty in the area. Since the calculation of the area involves squaring the radius, the percent uncertainty in area is double the percent uncertainty in radius. This gives us a result of .08 or 8%. The reasons are explained in the given solution.

NOTE FOR UNIVERSITY PHYSICS STUDENTS (calculus-based answer):

Note the following:

A = pi r^2, so the derivative of area with respect to radius is

dA/dr = 2 pi r. The differential is therefore

dA = 2 pi r dr.

Thus an uncertainty `dr in r implies uncertainty

`dA = 2 pi r `dr, so that

`dA / `dr = 2 pi r `dr / (pi r^2) = 2 `dr / r.

`dr / r is the proportional uncertainty in r.

We conclude that the uncertainty in A is 2 `dr / r, i.e., double the uncertainty in r.

STUDENT QUESTION

I looked at this, and not sure if I calculated the uncertainty correctly, as the radius squared yields double the uncertainty. I know where this is in the textbook, and do ok with uncertainty, but this one had me confused a bit.

INSTRUCTOR RESPONSE:

In terms of calculus, since you are also enrolled in a second-semester calculus class:

A = pi r^2

The derivative r^2 with respect to r is 2 r, so the derivative of the area with respect to r is dA / dr = pi * (2 r).

If you change r by a small amount `dr, the change in the area is dA / dr * `dr, i.e., rate of change of area with respect to r multiplied by the change in r, which is a good commonsense notion.

Thus the change in the area is pi * (2 r) `dr. As a proportion of the original area this is pi ( 2 r) `dr / (pi r^2) = 2 `dr / r.

The change in the radius itself was just `dr. As a proportion of the initial radius this is `dr / r.

The proportional change in area is 2 `dr / r, compared to the proportional change in radius `dr / r.

That is the proportional change in area is double the proportional change in radius.

STUDENT COMMENT

I used +-.1 instead of using +-.05. I understand why your solution used .05 and will use this method in the future.

INSTRUCTOR RESPONSE

Either way is OK, depending on your assumptions. When it's possible to assume accurate rounding, then the given solution works. If you aren't sure the rounding is accurate, the method you used is appropriate.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

#$&*

*********************************************

Question: What is your own height in meters and what is your own mass in kg (if you feel this question is too personal then estimate these quantities for someone you know)?

Explain how you determined these.

What are your uncertainty estimates for these quantities, and on what did you base these estimates?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I am 5'7"" inches tall. That is 67 inches. 1 inch equals approximately 2.54 cm so

67 inches * 2.54cm/in = approximately 170 cm. 170 cm = 1.7 meters

I believe I need to determine uncertainty based on my original measurement, so

I am somewhere between 66.5 and 67.5 inches tall. unc% = uncertainity/quantity *100%

unc% = .5 inches/67 inches *100%

unc% = .007 *100%

unc % = .7 %

I weigh 161 pounds on my bathroom scale so I am somewhere between 160.5 and 161.5

unc% = .5 lbs/ 161 lbs *100%

unc % = .003 = .3%

Converting 161 pounds to kg we use the conversion 1pound = .454 kg

161 pounds * .454 kg/pounds = 73.1 kg

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#$&*

.............................................

Given Solution:

Presumably you know your height in feet and inches, and have an idea of your ideal weight in pounds. Presumably also, you can convert your height in feet and inches to inches.

To get your height in meters, you would first convert your height in inches to cm, using the fact that 1 inch = 2.54 cm. Dividing both sides of 1 in = 2.54 cm by either 1 in or 2.54 cm tells us that 1 = 1 in / 2.54 cm or that 1 = 2.54 cm / 1 in, so any quantity can be multiplied by 1 in / (2.54 cm) or by 2.54 cm / (1 in) without changing its value.

Thus if you multiply your height in inches by 2.54 cm / (1 in), you will get your height in cm. For example if your height is 69 in, your height in cm will be 69 in * 2.54 cm / (1 in) = 175 in * cm / in.

in * cm / in = (in / in) * cm = 1 * cm = cm, so our calculation comes out 175 cm.

STUDENT SOLUTION

5 feet times 12 inches in a feet plus six inches = 66 inches. 66inches * 2.54 cm/inch = 168.64 cm. 168.64 cm *

.01m/cm = 1.6764 meters.

INSTRUCTOR COMMENT:

Good, but note that 66 inches indicates any height between 65.5 and 66.5 inches, with a resulting uncertainty of about .7%.

168.64 implies an uncertainty of about .007%.

It's not possible to increase precision by converting units.

STUDENT SOLUTION AND QUESTIONS

My height in meters is - 5’5” = 65inches* 2.54cm/1in = 165cm*1m/100cm = 1.7m. My weight is 140lbs*

1kg/2.2lbs = 63.6kg. Since 5’5” could be anything between 5’4.5 and 5’5.5, the uncertainty in height is ???? The

uncertainty in weight, since 140 can be between 139.5 and 140.5, is ??????

INSTRUCTOR RESPONSE

Your height would be 5' 5"" +- .5""; this is the same as 65"" +- .5"".

.5"" / 65"" = .008, approximately, or .8%. So the uncertainty in your height is +-0.5"", which is +-0.8%.

Similarly you report a weight of 140 lb +- .5 lb.

.5 lb is .5 lb / (140 lb) = .004, or 0.4%. So the uncertainty is +-0.5 lb, or +- 0.4%.

STUDENT QUESTION

I am a little confused. In the example from another student her height was 66 inches and you said that her height could be between 65.5 and 66.5 inches. but if you take the difference of those two number you get 1, so why do you divide by .5 when the difference

is 1

INSTRUCTOR RESPONSE

If you regard 66 inches as being a correct roundoff of the height, then the height is between 65.5 inches and 66.5 inches. This makes the height 66 inches, plus or minus .5 inches. This is written as 66 in +- .5 in and the percent uncertainty would be .5 / 66 = .007, about .7%.

If you regard 66 inches having been measured only accurately enough to ensure that the height is between 65 inches and 67 inches, then your result would be 66 in +- 1 in and the percent uncertainty would be 1 / 66 = .015 or about 1.5%.

STUDENT QUESTION

If a doctor were to say his inch marker measured to the nearest 1/4 inch, would that be the uncertainty?

Meaning, would I only have to multiply that by .0254 to find the uncertainty in meters, dividing that by my height to find the percent

uncertainty?

INSTRUCTOR RESPONSE

That's pretty much the case, though you do have to be a little bit careful about how the rounding and the uncertainty articulate.

For example I'm 72 inches tall. That comes out to 182.88 cm. It wouldn't make a lot of sense to say that I'm 182.88 cm tall, +- .64 cm. A number like 182.88 has a ridiculously high number of significant figures.

It wouldn't quite be correct to just round up and say that I'm 183 cm tall +- .64 cm. We might be able to say that I'm 183 cm tall, +- .76 cm, but that .76 cm again implies more precision than is present.

We would probably end up saying that I""m 183 cm tall, +- 1 cm.

Better to overestimate the uncertainty than to underestimate it.

As far as the percent uncertainty goes, we wouldn't need to convert the units at all. In my case we would just divide 1/4 in. by 72 in., getting about .034 or 3.4%.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

#$&*

*********************************************

Question: A ball rolls from rest down a book, off that book and onto another book, where it picks up additional speed before rolling off the end of that book.

Suppose you know all the following information:

How far the ball rolled along each book.

The time interval the ball requires to roll from one end of each book to the other.

How fast the ball is moving at each end of each book.

How would you use your information to calculate the ball's average velocity on each book?

How would you use your information to calculate how quickly the ball's speed was changing on each book?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Finding out how quickly the ball's speed is changing is a question of acceleration

aAve= Change in velocity/change in time

We know the change in time because we know the time interval it takes to roll from one end of each book to the other.

To find the change in velocity we need to know initial velocity and final velocity on each book. We know each initial velocity because for book one it starts at rest. For book two we can find it by finding the final velocity for book two ( assuming we don't get confounded by the drop from book one to book two)

To find the final velocity for book one we need to double the average velocity on book one which is the `ds/`dt. We know each of these.

For book two we know the average velocity and since we know the intial velocity (from the final velocity on book one) we can figure out final velocity, thus we have all the pieces of the puzzle.

aAve = Change in velocity/change in time.

@&

Excellent explanation.

*@

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#$&*

"

@&

Very good on this assignment. Check my notes.

*@