Assignment 2

course MTH 158

I sent this in earlier but I never got it back with in the 24hrs. So I just redone it to work on the problems a little more anyway.

[ŽŸž¾xÙ†ºaåyéîe˜¥ÒÓÇâŸþ°¹PyxèÊassignment #002

002. `query 2

College Algebra

06-04-2009

......!!!!!!!!...................................

18:12:17

query R.2.46 (was R.2.36) Evaluate for x = -2, and y = 3 the expression (2x - 3) / y and explan how you got your result.

......!!!!!!!!...................................

RESPONSE -->

First put in the x and y values

Then I solved the inside parentheses

Then I solved the outside parentheses

to come up with -7/3

(2(-2)-3)/3

(-4-3)/3

-7/3

.................................................

......!!!!!!!!...................................

18:12:28

** Starting with (2x-3)/y we substitute x=-2 and y=3 to get

(2*(-2) - 3)/3 =

(-4-3)/3=

-7/3. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

18:17:13

query R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explan how you got your result.

......!!!!!!!!...................................

RESPONSE -->

First substitute the given values for x and y

Then work inside the brackets for each problem

Then use the absolute values to finish the equation

| |4(3)|-|5(-2)| |

| |12| - |-10| |

| 12 - 10 | = |2|= 2

.................................................

......!!!!!!!!...................................

18:17:22

** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get

| | 4*3 | - | 5*-2 | | =

| | 12 | - | -10 | | =

| 12-10 | =

| 2 | =

2. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

18:18:53

query R.2.64 (was R.2.54) Explain what values, if any, must not be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)

......!!!!!!!!...................................

RESPONSE -->

The denominator cannot equal 0 because it is undefinded

X cannot equal 0

.................................................

......!!!!!!!!...................................

18:19:25

** The denominator of this expression cannot be zero, since division by zero is undefined.

Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 only if x^2 + 1 = 0 or x = 0.

Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

18:20:57

query R.2.76 \ 73 (was R.4.6). What is -4^-2 and how did you use the laws of exponents to get your result?

......!!!!!!!!...................................

RESPONSE -->

1/16

I used the rule that states when you have a negative exponent use the recirocal to change the exponent positive and then solve

.................................................

......!!!!!!!!...................................

18:22:23

** order of operations implies exponentiation before multiplication; the - in front of the 4 is not part of the 4 but is an implicit multiplication by -1. Thus only 4 is raised to the -2 power.

-4^(-2) Since a^-b = 1 / (a^b), we have

4^-2 = 1 / (4)^2 = 1 / 16.

The - in front then gives us -4^(-2) = - ( 1/ 16) = -1/16.

If the intent was to take -4 to the -2 power the expression would have been written (-4)^(-2).**

......!!!!!!!!...................................

RESPONSE -->

I see the mistake I made I did use the - like it was attached to the 4

.................................................

......!!!!!!!!...................................

18:30:03

query Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?

......!!!!!!!!...................................

RESPONSE -->

Used the reciprocal again

(1/3^2 * 5^3)/(3^2 * 5)

(125/9) / 45

(125/9) * (1/45) =125/405 = 25/81

.................................................

......!!!!!!!!...................................

18:31:08

** (3^(-2)*5^3)/(3^2*5). Grouping factors with like bases we have

3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get

3^(-2 -2) * 5^(3-1), which gives us

3^-4 * 5^2. Using a^(-b) = 1 / a^b we get

(1/3^4) * 5^2. Simplifying we have

(1/81) * 25 = 25/81. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

18:58:51

query R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

(6^3x^6)/(5^3y^6)

First I placed the exponent from the oustide to come up with

(5^-3x^6)/(6^-3y^6) then used the reciprocal to come up with my answer of

(6^3x^6)/(5^3y^6)

.................................................

......!!!!!!!!...................................

18:59:03

[ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to

5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have

5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result

6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

19:04:24

query Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

first I multiplied the exponet throughout the equation

use the reciprocal

to come up with (1/-8^2)*(1/x^6)

1/64x^6

.................................................

......!!!!!!!!...................................

19:04:36

** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2

-1/(-8^2 * x^3+2)

1/64x^5

INSTRUCTOR COMMENT:1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote.

Also it's not x^3 * x^2, which would be x^5, but (x^3)^2.

There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation.

ONE CORRECT SOLUTION: (-8x^3)^-2 =

(-8)^-2*(x^3)^-2 =

1 / (-8)^2 * 1 / (x^3)^2 =

1/64 * 1/x^6 =

1 / (64 x^5).

Alternatively

(-8 x^3)^-2 =

1 / [ (-8 x^3)^2] =

1 / [ (-8)^2 (x^3)^2 ] =

1 / ( 64 x^6 ). **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

19:14:21

query R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

1/x3^y

= (1/(x)^2)(y)/(xy^2)

=x^-2-1*y1-2

=x^-3*y^-1

=1/x^3y

.................................................

......!!!!!!!!...................................

19:14:27

** (1/x^2 * y) / (x * y^2)

= (1/x^2 * y) * 1 / (x * y^2)

= y * 1 / ( x^2 * x * y^2)

= y / (x^3 y^2)

= 1 / (x^3 y).

Alternatively, or as a check, you could use exponents on term as follows:

(x^-2y)/(xy^2)

= x^-2 * y * x^-1 * y^-2

= x^(-2 - 1) * y^(1 - 2)

= x^-3 y^-1

= 1 / (x^3 y).**

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

19:24:51

query Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

4x^-2(y^-1z^-1)/-25x^4 y^2 z^5

4/25*(x^-2-4)*(y^-1-2)*(z^-1-5)

4/25*(1/x^6)*(1/y^3)*(1/z^6)

= 4/25 x^6 y^3 z^6

.................................................

......!!!!!!!!...................................

19:26:02

** Starting with

4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1:

4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression:

(4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents:

(4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further:

(4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents:

4z^4/ (25x^6 * y^3 ) **

......!!!!!!!!...................................

RESPONSE -->

I didnt see the - in front of the 5 I used it as a positive 5 instead of -5

.................................................

......!!!!!!!!...................................

19:26:47

query R.2.122 (was R.4.72). Express 0.00421 in scientific notation.

......!!!!!!!!...................................

RESPONSE -->

4.21 X 10^-3

.................................................

......!!!!!!!!...................................

19:26:53

** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

19:27:35

query R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.

......!!!!!!!!...................................

RESPONSE -->

9.7*10^3 in decimal notation is 9.7 * 1000 = 9700

.................................................

......!!!!!!!!...................................

19:27:48

** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

19:29:36

query R.2.152 \ 150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?

......!!!!!!!!...................................

RESPONSE -->

|97-98.6|=|-1.6| = 1.6> 1.5 This is an unhealthy temp. this is true

|100-98.6|=|1.4|=1.4<1.5 This is not a true statement to be true | | needs to be greater than 1.5 not less than

.................................................

......!!!!!!!!...................................

19:29:44

** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5.

But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or

| 1.4 | > 1.5, giving us

1.4>1.5, which is an untrue statement. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

&#Very good responses. Let me know if you have questions. &#