course MTH 158 7/4/09 1:20 A.M. If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * Starting with | 1-2z| +6 = 9 we add -6 to both sides to get | 1 - 2z| = 3. We then use the fact that | a | = b means that a = b or a = -b: 1-2z=3 or 1-2z= -3 Solving both of these equations: -2z = 2 or -2z = -4 we get z= -1 or z = 2 We express our solution set as {-2/3,2} ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I worked the equation the way you had it wrote in the question |1 - 2z| + 6 = 0 so wouldnt our 2 equations be 1 - 2z = -6 and 1 - 2z = 6
.............................................
Given Solution: * * My note here might be incorrect. If the equation is | x^2 +3x -2 | = 2 then we have x^2 + 3x - 2 = 2 or x^2 + 3x - 2 = -2. In the first case we get x^2 + 3x - 4 = 0, which factors into (x-1)(x+4) = 0 with solutions x = 1 and x = -4. In the second case we have x^2 + 3x = 0, which factors into x(x+3) = 0, with solutions x = 0 and x = -3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 1.6.40 \ 36 (was 1.6.30). Explain how you found the real solutions of the inequality | x + 4 | + 3 < 5. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2 equations | x + 4 | + 3 < 5 | x + 4 | < 5 - 3 | x + 4 | < 2 so we have x+4 < 2 and x + 4 < -2 which equals x < -2 and x < -6 (-6 < x < -2) Confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * STUDENT SOLUTION: | x+4| +3 < 5 | x+4 | < 2 -2 < x+4 < 2 -6 < x < -2 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 1.6.52 \ 48 (was 1.6.42). Explain how you found the real solutions of the inequality | -x - 2 | >= 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: | - x - 2 | >= 1 or |-x - 2| >= -1 Dividing -1 from both sides -x >= 3 (x =< -3) In the second equation diving -1 from both sides -x >= 1 (x=< -1) Confidence rating: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Correct solution: | -x -2 | >= 1 Since | a | > b means a > b or a < -b (note the word 'or') we have -x-2 >= 1 or -x -2 <= -1. These inequalities are easily solved to get -x >= 3 or -x <= 1 or x <= -3 or x >= -1. So our solution is {-infinity, -3} U {-1, infinity}. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: "