course MTH 158 7/25/09 5:30 P.M. If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * The inverse proportionality to the square root gives us y = k / sqrt(x). y = 4 when x = 9 gives us 4 = k / sqrt(9) or 4 = k / 3 so that k = 4 * 3 = 12. The equation is therefore y = 12 / sqrt(x). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 2.5.12 / 2.7.12 (was 2.6.10). z directly with sum of cube of x and square of y; z=1 and x=2 and y=3. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: z=k(x^3 + y^2) 1=K((2)^3 + (3)^3) 1 = K (8+9) 1 = K(17) 1/17 = k z = 1/17(x^3 + y^2) confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The proportionality is z = k (x^3 + y^2). If x = 2, y = 3 and z = 1 we have 1 = k ( 2^3 + 3^2) or 17 k = 1 so that k = 1/17. The proportionality is therefore z = (x^3 + y^2) / 17. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 2.5.20 / 2.7.20 (was 2.6.20). Period varies directly with sqrt(length), const 2 pi / sqrt(32) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T=k(sqrt(l) T= (2pi/sqrt(32))(sqrt(l)) confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The equation is T = k sqrt(L), with k = 2 pi / sqrt(32). So we have T = 2 pi / sqrt(32) * sqrt(L). ** **** What equation relates period and length? **** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 2.5.42 / 2.7.42 (was 2.7.34 (was 2.6.30). Resistance dir with lgth inversely with sq of diam. 432 ft, 4 mm diam has res 1.24 ohms. **** What is the length of a wire with resistance 1.44 ohms and diameter 3 mm? Give the details of your solution. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: R=K(l/d^2) 1.24=K(432/16) 16(1.24)=K(432) 19.84/432 = K K = .046 1.44 = .046(L/9) (9)1.44 = .046L 12.96 = .046L 12.96/.046 = L L = 281.74' confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * We have R = k * L / D^2. Substituting we obtain 1.24 = k * 432 / 4^2 so that k = 1.24 * 4^2 / 432 = .046 approx. Thus R = .046 * L / D^2. Now if R = 1.44 and d = 3 we find L as follows: First solve the equation for L to get L = R * D^2 / (.046). Then substitute to get L = 1.44 * 3^2 / .046 = 280 approx. The wire should be about 280 ft long. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: "