course MTH 163 11/29/09 3:30 p.m. If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: `a** The table for y vs. t is t y 0 0 1 2 2 8 3 18 The table for sqrtIy) vs t, with sqrt(y) give to 2 significant figures, is t sqrt(y) 0 0 1 1.4 2 2.8 3 4.2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q It the first difference of the `sqrt(y) sequence constant and nonzero? yes that is the change in y which is 1.41421 which is constant &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q The sqrt(y) sequence is 0, 1.4, 2.8, 4.2. The first-difference sequence is 1.4, 1.4, 1.4, which is constant and nonzero. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q Give your values of m and b for the linear function that models your table. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: the 1.41421 would be the slope or m value b would be 0 the y intercept confidence rating: 4 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The points (t, sqrt(y) ) are (0,0), (1, 1.4), (2, 2.8), (3, 4.2). These points are fit by a straight line thru the origin with slope 1.4, so the equation of the line is sqrty) = 1.4 t + 0, or just sqrt(y) = 1.4 t. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q Does the square of this linear functiongive you back the original function? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: yes it will sqrt(y)= 1.41421t y = 2t^2 confidence rating: 4 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Squaring both sides of sqrt(y) = 1.4 t we get y = 1.96 t^2. The original function was y = 2 t^2. Our values for the sqrt(y) function were accurate to only 2 significant figures. To 2 significant figures 1.96 would round off to 2, so the two functions are identical to 2 significant figures. *&*& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q problem 2. Linearize the exponential function y = 7 (3 ^ t). Give your solution to the problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y= 7*3^t t y 0 7 1 21 2 63 3 189 log(y) vs t t log(y) 0 .85 1 1.32 2 1.80 3 2.28 change in log(y)~.47 this data is now linear log(y)=.47t * .85 y= 10^.47(t) + 10^.85 y = 2.95t +7.08 confidence rating: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** A table for the function is t y = 7 ( 3^t) 0 7 1 21 2 63 3 189 The table for log(y) vs. t is t log(7 ( 3^t)) 0 0..85 1 1.32 2 1.80 3 2.28/ Sequence analysis on the log(7 * 3^t) values: sequence 0.85 1.32 1.80 2.28 1st diff .47 .48 .48 The first difference appears constant with value about .473. log(y) is a linear function of t with slope .473 and vertical intercept .85. We therefore have log(y) = .473 t + .85. Thus 10^(log y) = 10^(.473 t + .85) so that y = 10^(.473 t) * 10^(.85) or y = (10^.473)^t * (10^.85), which evaluating the power of 10 with calculator gives us y = 2.97^t * 7.08. To 2 significant figures this is the same as the original function y = 3 * 7^t. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q problem 7. Hypothesized fit is `sqrt(y) = 2.27 x + .05. Compare your result to the 'ideal' y = 5 t^2 function. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x y 0 .14 1 5.66 2 23.2 3 52 4 82.2 5 135.5 x sqrt(y) 0 .3742 1 2.3791 2 4.8166 3 7.2111 4 9.0664 5 11.6404 Line of best fit sqrt(y)= 2.25x +.287 taking the square of both sides y =5.0625x^2 + .0824 This is relatively close to the ideal function. confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** For the simulated data the y values are .14, 5.66, 23.2, 52, 82.2 and 135.5. The square roots of these values are 0.374; 2.38, 4.82; 7.21; 9.34, 11.64. Plotting these square roots vs. t = 0, 1, 2, 3, 4, 5 we obtain a nearly straight-line graph. The best-fit linear function to sqrt(y) vs. x gives us sqrt(y) = 2.27•t + 0.27. Your function should be reasonably close to this but will probably not be identical. Squaring both sides we get y = 5.1529•t^2 + 1.2258•t + 0.0729. If the small term .0729 is neglected we get y = 5.15 t^2 + 1.23 t. Because of the 1.23 t term this isn't a particularly good approximation to y = 5 t^2.** STUDENT COMMENT ok i dont really understand where the 1.23 came from in the first place INSTRUCTOR RESPONSE: If your points lie along or near a straight line then the straight line is of the form y = m x + b. b is the y intercept of the straight line, m is the slope. For the given data, after linearizing we found that m was about 1.23. If the line happens to go through the origin then the y intercept is 0, so b = 0. Otherwise b is not zero. You simply accept whatever the 'best' straight line tells you. Sometimes b will be zero, but usually it won't. In the current example, it happens that the 'best' straight line goes through the vertical axis at b = .05. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q problem 9. Assuming exponential follow the entire 7-step procedure for given data set Give your x and y data. Show you solution. Be sure to give the average deviation of your function from the given data? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t y 0 .42 1 .29 2 .21 3 .15 4 .10 5 .07 log(y) vs t t log (y) 0 -.377 1 -.538 2 -.678 3 -.824 4 - 1 5 -1.155 line of best fit log(y)=-.155t + -.375 y= 10^-.155t + 10^-.375 y= .6998t + .4217 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aFor (t, y) data set (0,.42), (1,.29),(2,.21),(3,.15),(4,.10),(5,.07) we get log(y) vs. t: t log(y) 0 -.375 1 -.538 2 -.678 3 -.824 4 -1 5 -1.15 A best fit to this data gives log(y) = - 0.155•x - 0.374. Solving we get 10^log(y) = 10^(- 0.155•t - 0.374) or y = 10^-.374 * (10^-.155)^t or y = .42 * .70^t. The columns below give t, y as in the original table, y calculated as y = .42 * .70^t and the difference between the predicted and original values of y: 0 0.42 0.42 0 1 0.29 0.294 -0.004 2 0.21 0.2058 0.0042 3 0.15 0.14406 0.00594 4 0.1 0.100842 -0.000842 5 0.07 0.0705894 -0.0005894 The deviations in the last column have an average value of -.00078. This indicates that the model is very good. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q problem 11. determine whether the log(y) vs. t or the log(y) vs. log(t) transformation works. Complete the problem and give the average discrepancy between the first function and your data. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x y .5 .7 1 .97 1.5 1.21 2 1.43 2.5 1.56 log(x) Log(y) -.30103 -.1549 0 -.013228 .176091 .0828 .30103 .1553 .39794 .193125 confidence rating: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The first table gives us x y log(x) log(y) 0.5 0.7 -0.30103 -0.1549 1 0.97 0 -0.01323 1.5 1.21 0.176091 0.082785 2 1.43 0.30103 0.155336 2.5 1.56 0.39794 0.193125 log(y) vs. x is not linear. log(y) vs. log(x) is linear with equation log(y) = 0.5074 log(x) - 0.0056. Applying the inverse transformation we get 10^log(y) =10^( 0.5074 log(x) - 0.0056) which we simplify to obtain y = 0.987•x^0.507. The second table gives us x y log(x) log(y) 2 2.3 0.30103 0.361728 4 5 0.60206 0.69897 6 11.5 0.778151 1.060698 8 25 0.90309 1.39794 log(y) vs. x is linear, log(y) vs. log(x) is not. From the linear graph we get log(y) = 0.1735x + 0.0122, which we solve for y: 10^log(y) = 10^(0.1735x + 0.0122) or y = 10^.0122 * 10^(0.1735•x) = 1.0285 * 1.491^x. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):Im not sure how to come up with this "" 10^log(y) =10^( 0.5074 log(x) - 0.0056) which we simplify to obtain y = 0.987•x^0.507. ""
.............................................
Given Solution: `a*
`a** The table is
x | y = f(x) |
0 | 0 |
0.5 | 0.5 |
1 | 2 |
1.5 | 4.5 |
2 | 8 |
Reversing columns we get the following partial table for the
inverse function:x | f ^ -1 (x) |
0 | 0 |
0.5 | 0.5 |
2 | 1 |
4.5 | 1.5 |
8 | 2 |
.............................................
Given Solution: `a** The curve of the original function is increasing at an increasing rate, the curve for the inverse function is increasing at a decreasing rate. The curves meet at (0, 0) and at (1, 1). The line connecting the pairs of points passes through the y = x line at a right angle, and the y = x line bisects each connecting line. So the two graphs are mirror images of one another with respect to the line y = x. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 8. If we reversed the columns of the 'complete' table of the squaring function from 0 to 12, precisely what table would we get? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Our reversed table would give us the table for the square root function y = sqrt(x). The y = x^2 and y = sqrt(x) functions are inverse functions for x >= 0. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 9. If we could construct the 'complete' table of the squaring function from 0 to infinity, listing all possible positive numbers in the x column, then why would we be certain that every possible positive number would appear exactly one time in the second column? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: All possible numbers appear in the second column confidence rating: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The second column consists of all the squares. In order for a number to appear in the second column the square root of that number would have to appear in the first. Since every possible number appears in the first column, then no matter what number we select it will appear in the second column. So every possible positive number appears in the second column. If a number appears twice in the second column then its square root would appear twice in the first column. But no number can appear more than once in the first column. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What number would appear in the second column next to the number 4.31 in the first column? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 18.5761 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The table is the squaring function so next to 4.31 in the first column, 4.31^2 = 18.5761 would appear in the second. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What number would appear in the second column next to the number `sqrt(18) in the first column? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 18 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The square of sqrt(18) is 18, so 18 would appear in the second column. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What number would appear in the second column next to the number `pi in the first column? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 9.8696 confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** pi^2 would appear in the second column. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What would we obtain if we reversed the columns of this table? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We would obtain the square root function instead of the squaring function confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aOur table would have the square of the second-column value in the first column, so the second column would be the square root of the first column. Our function would now be the square-root function. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What number would appear in the second column next to the number 4.31 in the first column of this table? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2.07605 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** you would have sqrt(4.31) = 2.076 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What number would appear in the second column next to the number `pi^2 in the first column of this table? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Pi or 3.14159 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The number in the second column would be pi, since the first-column value is the square of the second-column value. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q What number would appear in the second column next to the number -3 in the first column of this table? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This would not be a real result so -3 wouldn't be in the first column confidence rating: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** -3 would not appear in the first column of the reversed table of the squaring function, since it wouldn't appear in the second column of that table. ** STUDENT COMMENT: (student gave the answer 1.73 i) oh wow that was really tricky INSTRUCTOR RESPONSE: sqrt(-3) = 1.73 i is a very good answer; if the domain and range of the function include the complex numbers, this would in fact be a 3-significant-figure approximation of the number corresponding to -3. Since we're dealing here with the real numbers, though, -3 never appears in the second column of the x^2 function, so it won't appear in the first column of the inverse function. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 13. Translate each of the following exponential equations into equations involving logarithms, and solve where possible: 2 ^ x = 18 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: log(2)18=x x=ln(18)/ln(2) x=4.16993 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** b^x = a is expressed in logarithmic form as x = log{base b}(a) so this equation would be translated as x = log{base 2}(18) = log(18) / log(2). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 2 ^ (4x) = 12 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: log(2)12=4x ln(12)/ln(2)=4x x= {ln(12)/ln(2)]/4 confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** b^x = a is expressed in logarithmic form as x = log{base b}(a) so this equation would be translated as 4 x = log{base 2}(12) = log(12) / log(2). ** STUDENT QUESTION: Mr.Smith, I don’t understand how you have this laid out. Could give more of a step by step detail so that I might understand it INSTRUCTOR RESPONSE: Sure. Step-by-step: b^x = a is expressed in logarithmic form as x = log{base b}(a) 2 ^ (4x) = 12 is of the form b^x = a, but with b = 2, x replace by 4x and a = 12. Thus the form x = log{base b}(a) becomes 4x = log{base 2}(12). log{base 2}(12) = log(12) / log(2). Thus 4x = log(12) / log(2). You weren't asked to solve this for x, but had you been asked the solution would be found by dividing both sides by 4, which gives us x = log(12) / (4 log(2) ). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 5 * 2^x = 52 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2^x=52/5 log(2)(52/5)=x ln(52/5)/ln(2)=x confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** You get 2^x = 52/5 so that x = log{base 2}(52/5) = log(52/5) / log(2). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 2^(3x - 4) = 9. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3x-4=log(9)/Log(2) 3x=log(9)/log(2)+4) x= (log(9)/log(2)+4)/3 confidence rating: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** You get 3x - 4 = log 9 / log 2 so that 3x = log 9 / log 2 + 4 and x = ( log 9 / log 2 + 4 ) / 3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Is that implied that this is log(10)9/log(10)2 + 4?
.............................................
Given Solution: `a** You get log(-4)/log(2)=3x - 5. However log(-4) is not a real number so there is no solution. Note that 2^(3x-5) cannot be negative so the equation is impossible. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):Not real sure of myself on these....
.............................................
Given Solution: `a** You get 2^(1/x) = 3 so that 1/x = log(3) / log(2) and x = log(2) / log(3) = .63 approx. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q 2^x * 2^(1/x) = 15 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x+1/x=log(2)/log(15) confidence rating: 0 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** 2^x * 2^(1/x) is the same as 2^(x + 1/x) so you get x + 1/x = log{base 2}(15). Multiplying both sides by x we get x^2 + 1 = log{base 2}(15). This is quadratic. We rearrange to get x^2 - log{base 2}(15) x + 1 = 0 then use quadratic formula with a=1, b=-log{base 2}(15) and c=1. Our solutions are x = 0.2753664762 OR x = 3.631524119. ** STUDENT COMMENT I don't think I would've made the correlation with a quadratic after working with exponential functions for so long.. I wasn't sure how to combine 1/x + x, either, which I'm guessing should be simple but it's eluding me at the moment. INSTRUCTOR RESPONSE You want to solve the equation, and the most efficient method is to multiply both sides by x. However to add 1/x + x you put both terms over the common denominator x. You do this by multiplying the second term, which has no denominator, by x / x. We get (1/x) + x * (x / x) = (1/x) + (x^2 / x) = (1 + x^2) / x. Again we wouldn't do that here, but that's how it would be done if we wanted to add the two terms. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):Thats as far as I could get with this one also
.............................................
Given Solution: `a** You take the 1/4 power of both sides to get 2^x = 5^(1/4) so that x = log(5^(1/4) ) / log(2) = 1/4 log(5) / log(2). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: