#$&* course Phy 241 4pm 12/10/2011 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002. Let R be the parallelogram with vertices (0,0), (1,4), (4,6), (4,2). Sketch and decribe the corresponding region after the transformation u = x^2, v = x+ y. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Assume region lines in the positive uv plane u = x^2 x = sqrt(u) 0 = sqrt(u) u = 0 v = x + y y = v - x 0 = v - sqrt(u) v = 0 At (x,y) = (0,0) (u,v) = (0,0) x = sqrt(u) 1 = sqrt(u) u = 1 y = v - sqrt(u) 4 = v - 1 v = 5 At (x,y) = (1,4) (u,v) = (1,5) x = sqrt(u) 4 = sqrt(u) u = 2 y = v - sqrt(u) 6 = v - 4 v = 10 At (x,y) = (4,6) (u,v) = (2,10) x = sqrt(u) 4 = sqrt(u) u = 2 y = v - sqrt(u) 2 = v - 4 v = 6 At (x,y) = (4,2) (u,v) = (2,6) looks like a triangle with a hypotenuse from (0,0) to (2,10) and lengths of the triangle from the origin (0,0) to (2,6) and (2,6) to (2,10) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Under the transformation u = 1/5(2x + y) and v = 1/5(x - 2y) the region D which is a square in the xy-plane with vertices (0,0), (1,-2) is mapped onto a square in the uv-plane. Use this information to find the integral of cos(2x + y)*sin(x - 2y) with respect to V over D. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: u = 1/5(2x + y) v = 1/5(x - 2y) dx/du = 2/5 dx/dv = 1/5 dy/du = 1/5 dy/dv = -2/5 (2/5)*(-2/5) - (1/5)*(1/5) = (-4/25) - (1/25) = -1/5 (0,0), (1, -2), (1,0), (0,-2) u = 1/5(2x + y) u(0,0) = 0 u(1,-2) = 0 u(1,0) = 2/5 u(0,-2) = -2/5 v = 1/5(x - 2y) v(0,0) = 0 v(1,-2) = 4/5 v(1,0) = 1/5 v(0,-2) = 4/5 x = v + 2u y = u - 2v (0,0), (1, -2), (1,0), (0,-2) becomes (0,0) , (0, 4/5) , (2/5 , 1/5) , (-2/5 , 4/5) Int[cos(2x + y)*sin(x - 2y)dA = Int[cos(5u)*sin(5v)(1/5)dv, 0, 4/5]du, -2, 2] = Int[-1/25cos(5u)*cos(4) + 1/25cos(5u)*cos(0)]du, -2, 2] = Int[0.0661cos(5u)] du, -2, 2 = 0.0132sin(10) - 0.0132sin(-10) = -0.0144 units confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): -.01439 seems alittle off, but I'll stick with it because 1/5 and 4/5 is not very much, either ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. A rotation of the xy-plane through the fixed angle theta is given by x = u cos(theta) - v sin(theta), y = u sin(theta) + v cos(theta). Compute the Jacobian of this transformation. Let E denote the ellipse x^2 + xy + y^2 = 9. Use a rotation of pi/4 to obtain an integral which is equivalent to the double integral of y with respect to V over E. Evaluate the integral found in the previous step. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x = u cos(theta) - v sin(theta) y = u sin(theta) + v cos(theta) dx/du*dy/dv - dy/du*dx/dv = [-u*sin(theta) + cos(theta)] * [-v*sin(theta) + cos(theta)] - [u*cos(theta) + sin(theta)] * [-vcos(theta) - sin(theta)] = [uvsin^2(theta) - usin(theta)cos(theta) + -vsin(theta)cos(theta) + cos^2(theta)] - [-uvcos^2(theta) - usin(theta)cos(theta) -vsin(theta)cos(theta) - sin^2(theta)] = uvsin^2(theta) + uvcos^2(theta) + cos^2(theta) + sin^2(theta) = uv + 1 x^2 + xy + y^2 = 9 r = 3 theta = pi/4 Int[dr * d(theta) Not sure what to do next. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"