#$&* course Mth 279 7/15/13 8:45pm Query 13 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the largest interval on which the equation t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 has a solution, with the initial conditions y(1) = 0, y ' (1) = 1. Your solution: **** t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 y"" + sin(2t)/(t(t^2 - 9) y' + 2y/t = 0 t cannot = 0, -3, 3 Largest interval that includes 1 is (-3, 3) #$&* confidence rating #$&*:232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Tell whether each of the following is increasing or decreasing, and whether concave down or concave up, in the vicinity of the initial point: • y '' + y = 2 - sin(t), y(0) = 1, y ' (0) = -1. • y '' + y = - 2 t, y(0) = 1, y ' (0) = -1. • y '' - y = t^2, y(0) = 1, y ' (0) = 1. • y '' - y = - 2 cos(t), y(0) = 1, y ' (0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: **** y '' + y = 2 - sin(t) Decreasing because first derivative y'(0) is negative Concave up because y"" is positive y '' + y = - 2 t Decreasing because first derivative y'(0) is negative Concave down because y"" is negative when you plug in y(0) = 1 y '' - y = t^2 Decreasing because first derivative y'(0) is negative Concave up because y"" is positive y '' - y = - 2 cos(t) Increasing because first derivative y'(0) is positive Concave down because y"" is negative when you plug in y(0) = 1 #$&* confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................