#$&* course mth 279 7/16/13 9:21pm Query 14 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: **** y_1 = e^(-t) y_1' = -e^(-t) y_1"" = e^(-t) y_2 = 2e^(1 - t) y_2' = -2e^(1 - t) y_2"" = 2e^(1 - t) in both cases when we plug values above into equation y"" + 2 y' + y (not equal) 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Suppose y_1 and y_2 are solutions to the equation y '' + alpha y ' + beta y = 0 and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t). What are the values of alpha and beta? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: **** W(t) = e^(-t) this means that the following is true: y_2' * e^(2t) - y_2 * (2*e^(2t)) = e^(-t) solving for y_1 y_2 = (1/2)*e^(-3t) we can now write two equations using y_1 and y_2 -9 e^(-3t) + alpha ((3/2)*e^(-3t)) + beta ( (1/2) e^(-3t)) = 0 4 e^(2t) + alpha (2e^(2t) + beta (e^(2t)) = 0 solving system of equations we find alpha = 22 beta = -48 #$&* confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"