#$&* course MTH 279 7/27/13 10:30pm Query 19 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = 6 t^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y"" + y' = 6 t^2 y_c = c_1 + c_2 e^t y_p = A t^3 + B t^2 + C t y'_p = 3 A t^2 + 2 B t + C y""_p = 6 A t + 2 B plug y_p values into equation 6 A t + 2 B + 3 A t^2 + 2 B t + C = 6 t 3A = 6 6A + 2B = 0 2B + C = 0 A = 2 B = -6 C = 12 y_p = 2t^3 - 6t^2 + 12t y(t) = c_1 + c_2 e^-t + 2t^3 - 6t^2 + 12t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = cos(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y"" + y' = cos(t) y_c = c_1 + c_2 e^-t y_p = A cos(t) + B sin(t) y'_p = -A sin(t) + B cos(t) y""_p = -A cos(t) - B sin(t) -A cos(t) - B sin(t) + B cos(t) - A sin(t) = cos(t) cos(t) (B-A) + sin(t) (-B - A) = cos(t) B - A = 1 -B - A = 0 A = -1/2, B = 1/2 y_p = -1/2 cos(t) + 1/2 sin(t) y(t) = c_1 + c_2 e^-t + 1/2 sin(t) - 1/2 cos(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' - 2 y ' + 3 y = 2 e^-t cos(t) + t^2 + t e^(3 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: **** 4.) y'' - 2y' + 3y = 2 e^(-t) cos(t) + t^2 + te^(3t) for 2e^(-t) t^r [Ae^(alpha t)sin(t) + Be^(-t)cos(t)] t^r[Ae^(1 - sqrt(2)i*t) + Bee^(1 - sqrt(2)i*t) Eulers identity: A[e^t cos(sqrt(2)t) + i e^t sin(sqrt(2)t)] + B[e^t cos(sqrt(2)t) + i e^t sin(sqrt(2)t)] C_1(e^t cos(sqrt(2)t) + C_2 i e^t sin(sqrt(2)t) C_1 e^t cos(sqrt(2)t) + C_2 e^t sin(sqrt(2)t) y_p = A_1 e^(-t) sin(t) + A_2 e^(-t) cos(t) + B_1 t^2 + B_2 t + B_3 + (C_1 t + C_2) e^(3t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' + 4 y = 2 sin(t) + cosh(t) + cosh^2(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y"" + 4y = 2 sinh(t) cosh(t) + cosh^2 (t) y_c = c_1 sin(2t) + c_2 cos(2t) rewrite hyperbolic sign and cos using exponential y"" + 4y = 2( (e^t - e^(-t)) /2) ((e^t + e^(-t))/2) + ((e^t + e(-t))/2)^2) simplify y"" + 4y = e^(2t) - e^(-2t) + 1 three parts to y_p the form for the first part: A e^(2t) second part: B e^(-2t) third part : C y_p = A e^(2t) + B e^(-2t) + C confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: The equation y '' + alpha y ' + beta y = t + sin(t) has complementary solution y_C = c_1 cos(t) + c_2 sin(t) (i.e., this is the solution to the homogeneous equation). Find alpha and beta, and solve the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y"" + alpha y' + beta y = t + sin(t) y_c = c_1 cos(t) + c_2 sin(t) alpha = 0, beta = 1 y"" + y = t + sin(t) I am not sure that I am right at this point. The particular solution for the t+ sin(t) part will have two parts with the first part (associate with the t) equal to a constant, and the second part (associated with sin(t)) being A sin(t) + B cos(t). However, when I take the derivatives of the second part and plug them in, they add to zero. I think I must have done something wrong.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Consider the equation y '' - y = e^(`i * 2 t), where `i = sqrt(-1). Using trial solution y_P = A e^(i * 2 t) find the value of A, which is in general a complex number (though in some cases the real or imaginary part of A might be zero) Show that the real and imaginary parts of the resulting function y_P are, respectively, solutions to the real and imaginary parts of the original equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: **** 7.) y'' - y = e^(it2) using A e^(i2t) y = A e^(i2t) y' = 2 i A e^(i2t) y'' = -4 A e^(i2t) -4 A e^(i2t) + A e^(i2t) = e^(i2t) e^(i2t) * (-4A + A) - e^(i2t) -4A + A = 1 A = -1/3 y_p = -1/3 e^(i2t) y_p = -1/3(cos(2t) + i sin(2t)) y_p = -1/3 cos(2t) + 1/3 i sin(2t)) u(t) = -1/3 cos(2t) ----- v(t) = -1/3 i sin(2t) u'(t) = 2/3 cos(2t) ----- v'(t) = -2/3 i sin(2t) u''(t) = 4/3 cos(2t) ----- v''(t) = 4/3 i sin(2t) 4/3 cos (2t) - 1/3 cos(2t) = Real [e^(2 i t)] = cos(2t) + i sin(2t) *&$# confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: