#$&* course Phy 121 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: `a**This situation is strictly analogous to the one you encountered early in the course. As before acceleration is change in velocity / change in clock time. However now it's angular acceleration. We have angular acceleration = change in angular velocity / change in clock time. The average angular velocity is change in angular position / change in clock time. This question assumes you know the angle through which the object rotates, which is its change in angular position, as well as the change in clock time. So you can calculate the average angular velocity. If angular accel is uniform and initial angular velocity is zero then the final angular velocity is double the average angular velocity. In this case the change in angular velocity is equal to the final angular velocity, which is double the average angular velocity. From this information you can calculate angular acceleration. ** Principles of Physics and General College Physics Problem 7.46: Center of mass of system 1.00 kg at .50 m to left of 1.50 kg, which is in turn .25 m to left of 1.10 kg. Using the position of the 1.00 kg mass as the x = 0 position, the other two objects are respectively at x = .50 m and x = .75 m. The total moment of the three masses about the x = 0 position is 1.00 kg * (0 m) + 1.50 kg * (.50 m) + 1.10 kg * (.75 m) = 1.58 kg m. The total mass is 1.00 kg + 1.50 kg + 1.10 kg = 3.60 kg, so the center of mass is at position x_cm = 1.58 kg m / (3.60 kg) = .44 meters, placing it a bit to the left of the 1.50 kg mass. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qQuery problem 7.50 3 cubes sides L0, 2L0 and 3L0; center of mass. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: M2 is 8x M1 (2^3) and M3 is 27x M1 (3^3) m1 * L0/2 + 8 m1 * (2 L0) + 27 M1 * (9/2 L0) = 276 m1 L0 / 2 = 138 m1 L0 138 m1 L0 / (36 m1) = 3.83 L0 x direction m1 * L0/2 + 8 m1 * (L0) + 27 m1 * ( 3/2 L0) = 49 m1 L0 49 m1 L0 / (36 m1) = 1.36 L0 y direction confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The mass of the second will be 2^3 = 8 times as great as the first. It takes 8 1-unit cubes to make a 2-unit cube. The mass of the third will be 3^3 = 27 times as great as the first. It takes 27 1-unit cubes to make a 3-unit cube. In the x direction the distance from left edge to center of first cube is 1/2 L0 (the center of the first cube). In the y direction the distance is from lower edge to center of the first cube is 1/2 L0 (the center of the first cube). In the x direction the distance from left edge to center of the second cube is L0 + L0 (the L0 across the first cube, another L0 to the center of the second), or 2 L0. In the y direction the distance from lower edge to center of the second cube is L0 (the center of the second cube). In the x direction the distance from left edge to center of the third cube is L0 + 2 L0 + 3/2 L0 (the L0 across the first cube, another 2 L0 across the second and half of 3L0 to the center of the third), or 9/2 L0. In the x direction the distance from lower edge to center of the first cube is 3/2 L0 (the center of the third cube). Moments about left edge and lower edge of first cube: If m1 is the mass of the first cube then in the x direction you have total moment m1 * L0/2 + 8 m1 * (2 L0) + 27 M1 * (9/2 L0) = 276 m1 L0 / 2 = 138 m1 L0. The total mass is m1 + 8 m1 + 27 m1 = 36 m1 so the center of mass is at center of mass in x direction: 138 m1 L0 / (36 m1) = 3.83 L0. In the y direction the moment is m1 * L0/2 + 8 m1 * (L0) + 27 m1 * ( 3/2 L0) = 49 m1 L0 so the center of mass is at center of mass in y direction: 49 m1 L0 / (36 m1) = 1.36 L0. ** STUDENT QUESTION I don’t understand why in the Y direction the “equation” isn’t identical to that of the X…why is X 2L0 and Y just L0…since the cubes have to be uniform this doesn’t make sense to me. INSTRUCTOR RESPONSE The coordinates are for the center of mass. Each cube rests on the x axis. The first cube extends in the vertical direction from the x axis to y = L0, so its center of mass in the y direction is at 1/2 L0. The second cube extends in the vertical direction from the x axis to y = 2 L0, so its center of mass in the y direction is at L0. The third cube extends in the vertical direction from the x axis to y = 3 L0, so its center of mass in the y direction is at 3/2 L0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): This one is confusing to me! I will need to make sure to practice this a little more ! ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat is the mass of the second cube as a multiple of the mass of the first? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: M=2^3=8 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** 3 dimensions: the mass will be 2^3 = 8 times as great. It takes 8 1-unit cubes to make a 2-unit cube. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the mass of the third cube as a multiple of the mass of the first? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: M=3^3=27 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The mass of the third cube is 3^3 = 27 times the mass of the first. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qHow far from the outside edge of the first cube is its center of mass? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x=0.5L0 y=0.5L0 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** In the x direction the distance is 1/2 L0 (the center of the first cube). In the y direction the distance is also 1/2 L0 (the center of the first cube). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qHow far from the outside edge of the first cube is the center of mass of the second cube? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x=2 L0 (L0+L0) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** In the x direction the distance is L0 + L0 (the L0 across the first cube, another L0 to the center of the second), or 2 L0. In the y direction the distance is L0 (the center of the second cube). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qHow far from the outside edge of the first cube is the center of mass of the third cube? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: L0 + 2 L0 + 3/2 L0 = 9/2L0 confidence rating #$&*:5 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** In the x direction the distance is L0 + 2 L0 + 3/2 L0 (the L0 across the first cube, another 2 L0 across the second and half of 3L0 to the center of the third), or 9/2 L0. In the x direction the distance is 3/2 L0 (the center of the third cube). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qHow do you use these positions and the masses of the cubes to determine the position of the center of mass of the system? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x direction: m1 * L0/2 + 8 m1 * (2 L0) + 27 M1 * (9/2 L0) = 276 m1 L0 / 2 = 138 m1 L0 Total Mass=m1 + 8 m1 + 27 m1 = 36 m1 center of mass: 138 m1 L0 / (36 m1) = 3.83 L0 y direction: m1 * L0/2 + 8 m1 * (L0) + 27 m1 * ( 3/2 L0) = 45 m1 L0 center of mass: 45 m1 L0 / (36 m1) = 1.25 L0. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** In the x direction you have moment m1 * L0/2 + 8 m1 * (2 L0) + 27 M1 * (9/2 L0) = 276 m1 L0 / 2 = 138 m1 L0. The total mass is m1 + 8 m1 + 27 m1 = 36 m1 so the center of mass is at 138 m1 L0 / (36 m1) = 3.83 L0. In the y direction the moment is m1 * L0/2 + 8 m1 * (L0) + 27 m1 * ( 3/2 L0) = 45 m1 L0 so the center of mass is at 45 m1 L0 / (36 m1) = 1.25 L0. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: