Endassgn1

course mth 173

4/5 10:30 I reworked these problems all weekend, I guess where I am having most of my problems is selecting which points to use in my equations.

001. `query1

*********************************************

Question: `qFor the temperature vs. clock time model, what were temperature and time for the first, third and fifth data points (express as temp vs clock time ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(95,0), (60,20), and (41,40)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

At clock time 7 approximately 80, at clock time 19 approx. 63, and at clock time 31 approx. 48.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(20,60), (40,41), and (60,30)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by

the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former

student will be outlined in the remaining nswers'.

STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you

obtained when you solved the problem.)

For my quadratic model, I used the three points

(10, 75)

(20, 60)

(60, 30). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is the first equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

60=400a+20b+c

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is the second equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

41=1600a+40b+c

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is the third equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

30=3600a+60b+c

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted equation 1 from equation 2, and came up with -19=1200a+20b

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c.

By doing this, I obtained my first new equation

3200a + 40b = -30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Subtracted equation 2 from equation 3, results were -11=2000a+20b

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c.

I obtained my second new equation:

3500a + 50b = -45**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated the 20b from the equations, and was left with a=.01

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5

-5 ( 3200a + 40b = -30)

and multiplied the second new equation by 4

4 ( 3500a + 50b = -45)

making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-11=2000(.01)+20b, -11=20+20b, -36=20b, b=-1.6

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015

a = .015

I then substituted this value into the equation

3200 (.015) + 40b = -30

and solved to find that b = -1.95. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is the value of c obtained from substituting into one of the original equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

c=88

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is the resulting quadratic model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = (.01)x^2-(1.6)x+(88)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was

y = (.015) x^2 - (1.95)x + 93. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First was 88, second was 73, third was 60. The deviation on the first was 7 degrees, the second was 2 degrees, and the third had no deviation.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers:

First prediction: 93

Deviation: 2

Then, since I used the next two ordered pairs to make the model, I got back

}the exact numbers with no deviation. So. the next two were

Fourth prediction: 48

Deviation: 1

Fifth prediction: 39

Deviation: 2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat was your average deviation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My average deviation was 1.875 degrees.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: My average deviation was .6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Is this different deviation just from using different points?

Right. Different points will result in different models and different deviations.

Idea to store away for the future: The 'best-fit' model minimizes the sum of the squared deviations, in a way you will likely learn sometime in the calculus sequence.

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qIs there a pattern to your deviations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Could not detect a pattern

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations.

INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qHave you studied the steps in the modeling process as presented in Overview, the Flow Model, Summaries of the Modeling Process, and do you completely understand the process?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qHave you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I have memorized them to the best of my ability, and have them written in my notebook.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!!

INSTRUCTOR COMMENT: OK, I'm convinced. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qQuery Completion of Model first problem: Completion of model from your data.Give your data in the form of depth vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My data was randomized from the website, (4.2,80.2), (8.4,72.9), (12.6,67.5), (16.8,63.3), (21, 59.3), and (25.2, 55)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems.

(5.3, 63.7)

(10.6. 54.8)

(15.9, 46)

(21.2, 37.7)

(26.5, 32)

(31.8, 26.6). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used (4.2,80.2), (12.6,67.5), and (21,59.3)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used

( 5.3, 63.7)

(15.9, 46)

(26.5, 32)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

17.64a + 4.2b + c= 80.2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

158.76a + 12.6b + c=67.5

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

441a + 21b + c=59.3

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the first equation from the second, and had 141.12a + 8.4b= -12.7

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using the second and the third equations I got, 282.24a + 8.4b= -8.2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

When i used the two equations with the c variable removed both were 8.4b so I just multiplied one by negative one to cancel and had, 141.12a = 4.5, or a = .032

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of

the first equation, only I made it negative so they would cancel out. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I got a= .032, and b= -2.051

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

c= 88.25

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 73.4 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(.032)x^2 - (2.051)x + 88.25= y

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

ok

*********************************************

Question: `qWhat is your depth prediction for the given clock time (give clock time also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The given clock time was 46 seconds, my depth prediction for this was 61.616 cm

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I hope its just the set of numbers used giving me the trouble here.

I don't see any problem.

------------------------------------------------

Self-critique rating #$&*

2

*********************************************

Question: `qWhat clock time corresponds to the given depth (give depth also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

At given clock time 14 my equation is left with a negative number inside the square root, [(2.051) +- `sqrt(-5.297)] / (.064)

I expect that's depth 14 rather than clock time 14. The graph of your function is a parabola which never gets that low, i.e., the function never takes the value 14, hence the negative under the square root.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

** INSTRUCTOR COMMENT: The exercise should have specified a depth.

The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and

solve the resulting equation:

68 = .01t^2 - 1.6t + 126

using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qCompletion of Model second problem: grade average Give your data in the form of grade vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:(0, 1), (10, 1.790569), (20, 2.118034), (30, 2.369306), (40, 2.581139), (50, 2.767767), (60, 2.936492), (70, 3.09165), (80, 3.23068), (90, 3.371708), (100, 3.5)

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Grade vs. percent of assignments reviewed

(0, 1)

(10, 1.790569)

(20, 2.118034)

(30, 2.369306)

(40, 2.581139)

(50, 2.767767)

(60, 2.936492)

(70, 3.09165)

(80, 3.236068)

(90, 3.371708)

(100, 3.5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:(30,2.369306), (60,2.936492), (90,3.371708)

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(20, 2.118034)

(50, 2.767767)

(100, 3.5)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 900a + 30b + c=2.369306

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:3600a + 60b + c=2.936492

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:8100a + 90b + c=3.371708

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:7200a + 60b=1.003

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:4500a + 30b=.436

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go

9600a + 80b = 1.381966 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:I subtracted to eliminate (b) from the equation, I had to multiply the 30b of the equation by -2 to cancel.

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:a= -.0000728, b= .02545

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

a = -.0000876638

b = .01727 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:c= 1.6712

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 1.773. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: y= (-.0000728)x^2 + (.02545)x + (1.6712)

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** y = -.0000876638 x^2 + (.01727)x + 1.773 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat is your percent-of-review prediction for the given range of grades (give grade range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:To achieve grades of 3.0 and 4.0 you must review approx. 68% of assignments to achieve 3.0, and there is no possibility for 4.0.

Right. If you solve the equation for g.p ave. 4.0 you get another situation where there's a negative under the square root.

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model desired average.

For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have

3.3 = -.00028 x^2 + .06 x + .5.

This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0.

We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility.

To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range.

In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat grade average corresponds to the given percent of review (give grade average also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The grade avg. for 80% review is approx 3.09, gives deviation of .14

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade

average corresponding to the percent of review according to the model. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qHow well does your model fit the data (support your answer)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The model fits the data pretty accurately. When used to find the projected grade for all numbers the avg. deviation was approx .5

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the

data. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qillumination vs. distance

Give your data in the form of illumination vs. distance ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: (1, 935.1395), (2, 264.4411), (3, 105.1209), (4, 61.01488), (5, 43.06238), (6, 25.91537), (7, 19.92772), (8, 16.27232), (9, 11.28082), (10, 9.484465)

confidence rating #$&*ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: (1, 935.1395)

(2, 264..4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:(3,105.1209), (6,25.91537), (9,11.28082)

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(2, 264.4411)

(4, 61.01488)

(8, 16.27232) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 9a + 3b + c = 105.1209

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:36a + 6b + c = 25.91537

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 81a + 9b + c = 11.28082

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:72a + 6b = -93.84008

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 45a + 3b = -14.63455

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: I multiplied the (3b) by (-2) to cancel out the b variable.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: a= 3.587, b= -48.927

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: c= 219.619

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 588.5691**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: y = (3.587)x^2 + (-48.927)x + (219.619)

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*ok

*********************************************

Question: `qWhat is your illumination prediction for the given distance (give distance also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The distance 1.6 AU has an illumination of 150.58952, which is less than illumination at 2.0 AU.

confidence rating #$&* 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):How do you choose which points to use?

Generally you would sketch a curve that follows the trend of the data and use three points spread out along that curve. Once you know the calculus of this situation there are more sophisticated things you can do.

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: For illumination ranges 25, and 100. I got x=10.132, and x=5.148 at 25, so 5.148 fits the data. At illumination 100 i got x=10.695, and x=4.585, the 4.585 fits better than 10.695 but neither correspond to where they

should be.

confidence rating #$&*0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the

equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the

data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are

more accurately modeled by exponential or power functions. **

Your work here looks very good. I've inserted a few notes, so be sure you review the document. Notes are in bold type.