#$&* course Mth 163 006.
.............................................
Given Solution: If c = -1 the form y = x^2 + c gives us y = x^2 - 1. Every value on a table of this function would be 1 less than the corresponding value on a table of y = x^2, and the graph of y = x^2 - 1 will lie 1 unit lower at each point then the graph of y = x^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002. Suppose that we wish to graph the functions y = x^2 + c for c = -3, then for c = -2, then for c = -1, then for c = 0, then for c = 1, then for c = 2, then for c = 3. If all these functions were plotted on the same set of coordinate axes, what would the final graph look like? It is suggested that you actually sketch your graph and describe your sketch. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Each of these functions gives a parabola with the vertex at a location corresponding to the shift of c, for c = 1 the vertex is 1 above the origin and this goes for all values of C in the functions, we have a graph of 6 parabolas each with their vertexes corresponding to the value of shift C. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The graph of the c= -3 function y = x^2 - 3 will lie 3 units lower than the graph of y = x^2. The graph of the c= -2 function y = x^2 - 2 will lie 2 units lower than the graph of y = x^2. The progression should be obvious. The graph of the c= 3 function y = x^2 + 3 will lie 3 units higher than the graph of y = x^2. The final graph will therefore show a series of 7 functions, with the lowest three units below the parabolic graph of y = x^2 and the highest three units above the graph of this function. Each graph will lie one unit higher than its predecessor. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I omitted for just y = x^2 so I had 6 graphs but I’m all over this. ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. The function y = (x -1)^3 is of the form y = (x -k)^3 with k = 1. What function would this form give us for k = 3? How would the graph of this function compare with that of y = x^3? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The asymptote of both negative and positive lines formed from x^3 converge at the origin, when the shift factor -k is incorporated the location of the convergence moves. A negative value moves it to the right, in this case, 3 units. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Recall how the graph of y = (x-1)^3 lies one unit to the right of the graph of y = x^3. The k = 3 function y = (x -3)^3 will lie 3 units to the right of the graph of y = x^3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. Suppose we wish to graph the functions y = (x -k)^3 for k values 2, then 3, then 4. If we graph all these functions on the same set of coordinate axes, what will the graph look like? It is suggested that you actually sketch your graph and describe your sketch. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Our graph shows three functions for y=x^3 each shifted in the direction relative to the k value, for 2, the graph is two units to the right of the origin, and so forth. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The k = 2 graph will lie 2 units to the right of the graph of y = x^3, and the k = 4 graph will lie 4 units to the right. The three graphs will all have the same shape as the y = x^3 graph, but will lie 2, 3 and 4 units to the right. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q005. The function y = 3 * 2^x is of the form y = A * 2^x for A = 3. What function would this form give us for A = 2? How would the graph of this function compare with that of y = 2^x? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph of y = 2^x shows a line with an asymptote along the negative x axis that emerges into a very steep curve as it passes through y=1, for this graph stretched by a factor of 2 (a), the curve passes through y =2, this pattern is true for all values of A, including if the value is negative, it will pass through the negative y axis, the asymptote remains along the negative x axis. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: As we saw earlier, the graph of y = 3 * 2^x lies 3 times as far from the x-axis as a graph of y = 2^x and is at every point three times as steep. We would therefore expect the A = 2 function y = 2 * 2^x to lie 2 times is far from the x-axis as the graph of y = 2^x. STUDENT QUESTION In this case, is A stretching or shifting? I said shifting in my response, but as I'm recalling from the previous assignment I suspect it may actually be stretching the graph by 2 units instead of shifting. INSTRUCTOR RESPONSE Your suspicion is correct. The graph is stretching. When a graph shifts, every point moves by the same amount. When a graph stretches, every point moves to a multiple of its original distance from some axis. Points further from that axis move more, points closer to the axis move less. For example the graph below depicts the x any y axes, and the graphs of the two functions. Vertical lines are drawn at x = 1 and x = 2. You should sketch a good copy of this graph and actually trace out the properties discussed below, and annotate your graph accordingly: • Look first at the vertical line corresponding to x = 1. It should be clear that, along this line, the graph of the second function is about twice as far from the x axis as the graph of the first. • Now look at the vertical line corresponding to x = 2. It should be clear that, along this line, the graph of the second function is about twice as far from the x axis as the graph of the first. • You should also see that along the x = 1 line the second graph lies at a certain distance above the first, while at the x = 2 line the second graph lies at a greater distance above the first. • At the origin, the graphs meet. Then if we move from left to right, starting at the origin, the vertical distance between the graphs keeps increasing. The graph below includes 'heavier' vertical line segments representing the increasing vertical distance between the graphs: This graph represents a vertical stretch, in every point of the second graph lies at double the vertical distance from the horizontal axis as the corresponding point of the first. By contrast, consider the graph shown below, in which the second graph is shifted in the vertical direction relative to the first. • On this graph the vertical distance is the same on every vertical line. • It probably doesn't look like this is the case. There's an optical illusion at work here, which is due to the fact that the upper graph gets closer and closer to the lower graph. However, despite appearances, this isn't the case if the distances are measured along the vertical lines. • In the first figure below we show the line segments which represent these vertical distances. They are all of the same length. In the second figure below, these line segments are depicted without the graph. In this example, all points of the second graph lie at the same vertical distance above the first. This graph represents a vertical shift. In a vertical shift all points point of one graph lie at the same vertical displacement relative to the first. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I am understanding the concept of stretch and shift very well, rather then say the stretch of whatever variable shows an intercept at the y point equivalent to the factor stretch, I could have said the factor stretch causes the graph to be a given factor from the x axis. ------------------------------------------------ Self-critique rating: ********************************************* Question: `q006. Suppose we wish to graph the functions y = A * 2^x for values A ranging from 2 to 5. If we graph all such functions on the same set of coordinate axes, what will the final graph look like? It is suggested that you actually sketch your graph and describe your sketch. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph shows the various function all with their asymptotes along the negative x axis but increasing more quickly based on the factor of A, for a =5 the graph pulls away from the x axis much more quickly and as I noted before, intercepts the y axis at 5, therefore it will be more steep then a function with factor a = 2, which would intercept two units above the x axis. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: These graphs will range from 2 times as far to 5 times as far from the x-axis as the graph of y = 2^x, and will be from 2 to 5 times as steep. The y intercepts of these graphs will be (0,2), (0, 3), (0, 4), (0,5). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q007. What is the slope of a straight line connecting the points (3, 8) and (9, 12)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The slope is 4/6 or 2/3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The rise between the points is from y = 8 to y = 12. This is a rise of 12-8 = 4. The run between these points is from x = 3 to x = 9, a run of 9 - 3 = 6. The slope between these points is therefore rise/run = 4/6 = 2/3, with decimal equivalent .6666.... &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. What are the coordinates of the t = 5 and t = 9 points on the graph of y = 2 t^2 + 3? What is the slope of the straight line between these points? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For t = 5 and t = 9 we have Y = 2(5)^2 + 3 Y = 53 Y = 2(9)^2 + 3 Y = 165 The slope is 112/4 or 28 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The t = 5 value is y = 2 * 5^2 + 3 = 2 * 25 + 3 = 50 + 3 = 53. The t = 9 value is similarly calculated. We obtain y = 165. The rise between these points is therefore 165-53 = 112. The run is from t = 5 to t = 9, a run of 9 - 5 = 4. This slope of a straight line connecting these points is therefore rise/run = 112/4 = 28. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I experimented around with my graphing program to see if I could come up with a linear function that would pass between both points, the best I could come up with was y=21x-25, I see that if we input an x value of 9 we get 164, I was off by a shifting factor of 1, I suppose there are various ways in which this can be expressed though, provided that our x value gives the y value we found earlier.. interesting.
.............................................
Given Solution: The t = 5 second and t = 9 second depths are easily calculated to be y = 53 cm and y = 165 cm. The depth therefore changes from 53 cm to 165 cm, a change of 165 cm - 53 cm = 112 cm, in the 4 seconds between the to clock times. The average rate of depth changes therefore 112 cm/(4 seconds) = 28 cm/second. We note that this calculation is identical to the calculation of the slope of the straight line connecting the t = 5 and t = 9 points of the graph y = 2 t^2 + 3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The slope on a graph of depth vs. clock time will give the average rate of change of depth with respect to clock time… did I say that right? I might’ve mentioned something about the function…
.............................................
Given Solution: The rise of the graph represents the change in the depth y and the run represents the change clock time t. The slope, which is rise/run, therefore represents change in depth/change in clock time, which is the average rate at which the depth changes. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I may have taken this a little too far by trying to incorporate my independent ideas about linear functions into the quadratic functions and so forth, I believe we will be talking about properties of linear functions in subsequent assignments so I may see whether this is an applicable topic, although it certainly feels so, perhaps you could assist me in sorting out some of my ideas here.