Query 1

course Phy 202

1/31 7:10pm

Question: Suppose you measure the length of a pencil. You use both a triply-reduced ruler and the original ruler itself, and you make your measurements accurate to the smallest mark on each. You then multiply the reading on the triply-reduced ruler by the appropriate scale factor.

• Which result is likely to be closer to the actual length of the pencil?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv As long as the scale is factored in, reducing the ruler to triple is original value will help accurately read the scale.

• What factors do you have to consider in order to answer this question and how do they weigh into your final answer?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Before the last comment about “scale factor”, I was skeptical about the idea of shrinking the ruler, but since the factor is scaled in, I would believe it to be somewhat accurate.

*********************************************

Question: Answer the same questions as before, except assume that the triply-reduced ruler has no optical distortion, and that you also know the scale factor accurate to 4 significant figures.

• Which result is likely to be closer to the actual length of the pencil?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The measurement with me optical distortion, especially because of the 4 sig figs.

• What factors do you have to consider in order to answer this question and how do they weigh into your final answer?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The factor that there is no optical distortion mean that there is less of a chance of having less correct data.

*********************************************

Question: Suppose you are to measure the length of a rubber band whose original length is around 10 cm, measuring once while the rubber band supports the weight of a small apple and again when it supports the weight of two small apples. You are asked to report as accurately as possible the difference in the two lengths, which is somewhere between 1 cm and 2 cm. You have available the singly-reduced copy and the triply-reduced copy, and your data from the optical distortion experiment.

• Which ruler will be likely to give you the more accurate difference in the lengths?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The data from the singly reduced copy would probably do the trick, only because its only between 1-2 centimeters, not millimeters.

• Explain what factors you considered and how they influence your final answer.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Visualizing what would help better.

*********************************************

Question: Later in the course you will observe how the depth of water in a uniform cylinder changes as a function of time, when water flows from a hole near the bottom of the cylinder. Suppose these measurements are made by taping a triply-reduced ruler to the side of a transparent cylinder, and observing the depth of the water at regular 3-second intervals.

The resulting data would consist of a table of water depth vs. clock times, with clock times 0, 3, 6, 9, 12, ... seconds. As depth decreases the water flows from the hole more and more slowly, so the depth changes less and less quickly with respect to clock time.

Experimental uncertainties would occur due to the optical distortion of the copied rulers, due to the spacing between marks on the rulers, due to limitations on your ability to read the ruler (your eyes are only so good), due to timing errors, and due to other possible factors.

Suppose that depth changes vary from 5 cm to 2 cm over the first six 3-second intervals.

Assume also that the timing was very precise, so that there were no significant uncertainties due to timing.

• Based on what you have learned in experiments done through Assignment 1, without doing extensive mathematical analysis, estimate how much uncertainty would be expected in the observed depths, and briefly explain the basis for your estimates. Speculate also on how much uncertainty would result in first-difference calculations done with the depth vs. clock time data, and how much in second-difference calculations.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Estimated uncertainties, would probably be +/- 0.15, the first and second differences would calculated even more uncertainties.

• How would these uncertainties affect a graph of first difference vs. midpoint clock time, and how would they affect a graph of second difference vs. midpoint clock time?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv As the differences are calculated, the more it happens, the more distorted the graph becomes.

• How reliably do you think the first-difference graph would predict the actual behavior of the first difference?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Reliable enough to depict the trend of the graph

• Answer the same for the second-difference graph.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The second difference graph, will more difficult to depict the trends.

• What do you think the first difference tells you about the system? What about the second difference?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The first difference is used to determine local max’s and min’s in a function. The second difference determines the concavity of a function.

*********************************************

Question: Suppose the actual second-difference behavior of the depth vs. clock time is in fact linear. How nearly do you think you could estimate the slope of that graph from data taken as indicated above (e.g., within 1% of the correct slope, within 10%, within 30%, or would no slope be apparent in the second-difference graph)?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Probably within 10% or so.

Again no extensive analysis is expected, but give a brief synopsis of how you considered various effects in arriving at your estimate.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The second difference determines the concavity of the function in the graph, so you can measure whether it’s concave up or concave down.

"

&#Your work looks good. Let me know if you have any questions. &#