course Phy 202 2/1 10:00pmHopefully this is in the correct format with the correct questions done. 002. `query 2
.............................................
Given Solution: ** The rate at which thermal energy is conducted across for a object made of a given substance is proportional to the temperature gradient (the rate at which temperature changes across the object), and to the cross-sectional area of the object. The conductivity is the constant of proportionality for the given substance. So we have the proportionality equation rate of thermal energy conduction = conductivity * temperature gradient * area, or in symbols R = k * (`dT/`dx) * A. (note: R is the rate at which thermal energy Q is transferred with respect to clock time t. Using the definition of rate of change, we see that the average rate over a time interval is `dQ / `dt, and the instantaneous rate is dQ / dt. Either expression may be used in place of R, as appropriate to the situation.) For an object of uniform cross-section, `dT is the temperature difference across the object and `dx is the distance between the faces of the object. The distance `dx is often denoted L. Using L instead of `dx, the preceding proportionality can be written R = k * `dT / L * A We can solve this equation for the proportionality constant k to get k = R * L / (`dT * A). (alternatively this may be expressed as k = `dQ / `dt * L / (`dT * A), or as k = dQ/dt * L / (`dT * A)). Your Self-Critique: OK Your Self-Critique rating #$&*: OK ********************************************* Question: Explain in terms of proportionalities how thermal energy flow, for a given material, is affected by area (e.g., is it proportional to area, inversely proportional, etc.), thickness and temperature gradient. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: Thermal energy flow for a given material of proportional the Area of the material, as well as the temperature gradient. This makes sense, if the object has a large area, and/or distance covered, energy flow will reflect. The thickness of the material is inversely proportional to the energy flow. If the object is thick, energy flow will be low, and vise versa. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** CORRECT STUDENT ANSWER WITHOUT EXPLANATION: Energy flow is: directly proportional to area inversely propportional to thicknessand directly proportional to temperature gradient Good student answer, slightly edited by instructor: The energy flow for a given object increases if the cross-sectional area (i.e., the area perpendicular to the direction of energy flow) increases. Intuitively, this is because the more area you have the wider the path available so more stuff can move through it. By analogy a 4 lane highway will carry more cars in a given time interval than will a two lane highway. In a similar manner, energy flow is directly proportional to cross-sectional area. Temperature gradient is the rate at which temperature changes with respect to position as we move from one side of the material to the other. That is, temperature gradient is the difference in temperature per unit of distance across the material: temperature gradient is `dT / `dx. (a common error is to interpret temperature gradient just as difference in temperatures, rather than temperature difference per unit of distance). For a given cross-sectional area, energy flow is proportional to the temperature gradient. If the difference in the two temperatures is greater then the energy will move more quickly from one side to the other. For a given temperature difference, greater thickness `dx implies smaller temperature gradient `dT / `dx. The temperature gradient is what 'drives' the energy flow. Thus greater thickness implies a lesser temperature gradient the lesser temperature gradient implies less energy flow (per unit of cross-sectional area) per unit of time and we can say that the rate of energy flow (with respect to time) is inversely proportional to the thickness. Your Self-Critique:OK Your Self-Critique rating #$&*: OK ********************************************* Question: principles of physics and general college physics 13.8: coeff of expansion .2 * 10^-6 C^-1, length 2.0 m. What is expansion along length if temp increases by 5.0 C? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: change in lengh= alpha*original length* change in temperature. Alpha is the coefficient of expansion in units of length/Celsius So- 0.2*^10-6 (C^-1)*2.0 meters* 5.0 C= 2.0*10^-6 meters confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: This problem is solved using the concept of a coefficient of expansion. The linear coefficient of thermal expansion of a material, denoted alpha, is the amount of expansion per unit of length, per unit of temperature: expansion per unit of length is just (change in length) / (original length), i.e., expansion per unit of length = `dL / L0 Thus expansion per unit of length, per unit of temperature is (expansion per unit of length) / `dT. Denoting this quantity alpha we have alpha = (`dL / L0) / `dT. This is the 'explanatory form' of the coefficient of expansion. In algebraically simplified form this is alpha = `dL / (L0 * `dT). In this problem we want to find the amount of the expansion. If we understand the concept of the coefficient of expansion, we understand that the amount of the expansion is the product of the coefficient of expansion, the original length and the temperature difference: If we dont completely understand the idea, or even if we do understand it and want to confirm our understanding, we can solve the formula alpha = `dL / (L0 * `dT) for `dL and plug in our information: `dL = alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m. This is 2 microns, two one-thousandths of a millimeter. By contrast the coefficient of expansion of steel is 12 * 10^-6 C^(-1); using this coefficient of expansion yields a change in length of 1.2 * 10^-4 m, or 120 microns, which is 60 times as much as for the given alloy. Your Self-Critique:OK Your Self-Critique rating #$&*: OK ********************************************* Question: query general phy 13.12: what is the coefficient of volume expansion for quartz, and by how much does the volume change? (Note that Principles of Physics and University Physics students do not do General Physics problems) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: beta for quartz is: 1 x 10^(-6) C^(-1). The equation well use here is similar to that of the linear expansion only different values are needed. change of volume= beta* orginial volume* change in temperature beta for quartz is: 1 x 10^(-6) C^(-1), which is the coffecient of volume expansion Volume of sphere= (4/3)pi r^3 change of volume = 1x10^-6*((4/3)pi((4.37^3))*(200-30)= 0.06 cm^3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The coefficient of volume expansion for quartz is 1 x 10^(-6) C^(-1). The sphere has diameter 8.75 cm, so its volume is 4/3 pi r^3 = 4/3 pi ( 4.38 cm)^3 = 352 cm^3, approx.. The coefficient of volume expansion is the proportionality constant beta in the relationship `dV = beta * V0 * `dT (completely analogous to the concept of a coefficient of linear expansion). We therefore have `dV = beta* V0*dT = 3 x 10^(-6) C^ (-1) * 352 cm^3 * (200C - 30 C) = 0.06 cm^3 ** STUDENT COMMENT: Similar to length an increase in temp. causes the molecules that make up this substance to move faster and that is the cause of expansion? INSTRUCTOR RESPONSE: At the level of this course, I believe that's the best way to think of it. There is a deeper reason, which comes from to quantum mechanics, but that's is way beyond the scope of this course.