#$&* course Mth 271 11/6 9p 015. The differential and the tangent line
.............................................
Given Solution: `aThe differential of a function y = f(x) is `dy = f ' (x) * `dx. Since for f(x) = x ^ 5 we have f ' (x) = 5 x^4, the differential is `dy = 5 x^4 `dx. At x = 3 the differential is `dy = 5 * 3^4 * `dx, or `dy = 405 `dx. Between x = 3 and x = 3.1 we have `dx = .1 so `dy = 405 * .1 = 40.5. Since at x = 3 we have y = f(3) = 3^5 = 243, at x = 3.1 we should have y = 243 + 40.5 = 283.5, approx.. Note that the actual value of 3.1 ^ 5 is a bit greater than 286; the inaccuracy in the differential is due to the changing value of the derivative between x = 3 and x = 3.1. Our approximation was based on the rate of change, i.e. the value of the derivative, at x = 3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):It seems like this method of estimation does not get very close ------------------------------------------------ Self-critique Rating:2
.............................................
Given Solution: `aThe differential of the function y = f(x) = ln(x) is `dy = f ' (x) `dx or `dy = 1/x `dx. If x = e we have `dy = 1/e * `dx. Between e and 2.8, `dx = 2.8 - e = 2.8 - 2.718 = .082, approx.. Thus `dy = 1/e * .082 = .030, approx.. Since ln(e) = 1, we see that ln(2.8) = 1 + .030 = 1.030, approx.. STUDENT QUESTION I see were the rate is coming from but why this value of one is used?????? INSTRUCTOR RESPONSE The function is very easy to evaluate with pleanty of accurately if x = e. All you need to know is that, to four significant figures, e = 2.718. So we very easily see that ln(e) = 2.718. You can't accurately evaluate ln(2.8). However 2.8 is close to e, so if you know how quickly the function y = ln(x) is changing when x = e, you can easily extrapolate to x = 2.8. Of course you can just plug 2.8 into your calculator and get an accurate answer, but that provides no insight into the behavior of the function, or into the nature of this approximation, and gives you nothing on which to build later understanding. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): n/a ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `q003. Using the differential verify that the square root of a number close to 1 is twice as close to 1 as the number. Hint: Find the differential approximation for the function f(x) = `sqrt(x) at an appropriate point. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: differential 1/2x ^-.5 dx x= 1.3 sq. rt. of 1.3 = 1.14 ½(1.14) ^-.5 corrected 1/(2* sq. rt. of(x)) * dx 1/(2*1.14) *(1.3-1)=.13 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe differential for this function is easily seen to be `dy = 1 / (2 `sqrt(x) ) * `dx. At x = 1 the differential is therefore `dy = 1 / 2 * `dx. This shows that as we move away from x = 1, the change in y is half the change in x. Since y = f(x) = 1 when x = 1, as x 'moves away' from 1 we see that y also 'moves away' from 1, but only half as much. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):I don’t really understand this other than to assume that the ½ in front of the differential means that it is half the distance. ------------------------------------------------ Self-critique Rating:1
.............................................
Given Solution: `aThe differential for this function is easily seen to be `dy = 2 x * `dx. At x = 1 the differential is therefore `dy = 2 * `dx. This shows that as we move away from x = 1, the change in y is double the change in x. Since y = f(x) = 1 when x = 1, as x 'moves away' from 1 we see that y also 'moves away' from 1, but by twice as much. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I will take your word for it that this is what is shows, but it seems like it would be better to show it with numbers. I still would like to know what you plug in for dx if x=1 and you are trying to show a change from 1. ------------------------------------------------ Self-critique Rating:1.5
.............................................
Given Solution: `aThe differential is `dL = L ' (t) * `dt = -.02 ( -250 e^(-.02 t) ) `dt, so `dL = 5 e^(-.02 t) `dt. At t = 50 we thus have `dL = 5 e^(-.02 * 50) `dt, or `dL = 1.84 `dt. The change over the next `dt = 2 weeks would therefore be approximately `dL = 1.84 * 2 = 3.68. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I understand the calculation but what would be the unit of measure here? ------------------------------------------------ Self-critique Rating:2
.............................................
Given Solution: `aThe differential is `dI = I ' (r) * `dr, where I ' is the derivative of I with respect to r. Since I ' (r) = - 2 k / r^3, we therefore have `dI = -2 k / r^3 * `dr. For the present example we have r = 10 m and `dr = .3 m, so `dI = -2 k / (10^3) * .3 = -.0006 k. This is the approximate change in illumination. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I thought the constant dropped out in finding the derivative. Also, I made dr negative since it was moving away from the light. I thought making it negative would show a decrease in the light. ------------------------------------------------ Self-critique Rating:2
.............................................
Given Solution: `aIf the width of the crystal is x then its length is 2x and its area is 2x * x = 2x^2. So we wish to approximate f(x) = 2x^2 near x = 5. f ' (x) = 4 x, so when x = 5 we have y = 2 * 5^2 = 50 and y ' = 4 * 5 = 20. The rate at which area changes with respect to width is therefore close to y ' = 20 units of area per unit of width. A change of .1 cm in width therefore implies a change of approximately 20 * .1 = 2 in area. Thus the approximate area should be 50 + 2 = 52. This can easily be compared with the accurate value of the area which is 52.02. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I understand the first part, but I don’t understand this part: t he rate at which area changes with respect to width is therefore close to y ' = 20 units of area per unit of width.
.............................................
Given Solution: `aThe volume of a sphere is V(r) = 4/3 * `pi * r^3. The rate at which the volume changes with respect to the radius is dV / dr = 4 * `pi * r^2. Thus when r = 20 the volume is changing at a rate of 4 * `pi * 20^2 = 1600 `pi cm^3 volume per cm of radius. It follows that if the radius is changing by .3 cm / day, the volume must be changing at 1600 `pi cm^3 / (cm of radius) * .3 cm of radius / day = 480 `pi cm^3 / day. Note that this is the instantaneous rate at the instant r = 20. This rate will increase as r increases. STUDENT QUESTION Were did the initial formula come from? I think I see how the problem was solved after that but were did V(r) = 4/3 * `pi * r^3 come from? INSTRUCTOR RESPONSE That is the formula for the volume of a sphere. This should be general knowledge. This formula was also used in some of the Orientation exercises. You should know everything that was covered in those exercises. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think I need prompting to remember to look up the formula and use it. I was trying to use r = .3^t. It makes sense but I really wish I had access to the video notes. I never got a replacement set, and none of the video links in the notes work. The message I get is “The system cannot find the file specified.” I am trying to use the book as a resource even if not directed to do so but the book doesn’t follow these qa’s and queries in the same order. ------------------------------------------------ self-critique Rating:2
.............................................
Given Solution: `aThe volume of a sphere is V(r) = 4/3 * `pi * r^3. The rate at which the volume changes with respect to the radius is dV / dr = 4 * `pi * r^2. Thus when r = 20 the volume is changing at a rate of 4 * `pi * 20^2 = 1600 `pi cm^3 volume per cm of radius. It follows that if the radius is changing by .3 cm / day, the volume must be changing at 1600 `pi cm^3 / (cm of radius) * .3 cm of radius / day = 480 `pi cm^3 / day. Note that this is the instantaneous rate at the instant r = 20. This rate will increase as r increases. STUDENT QUESTION Were did the initial formula come from? I think I see how the problem was solved after that but were did V(r) = 4/3 * `pi * r^3 come from? INSTRUCTOR RESPONSE That is the formula for the volume of a sphere. This should be general knowledge. This formula was also used in some of the Orientation exercises. You should know everything that was covered in those exercises. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think I need prompting to remember to look up the formula and use it. I was trying to use r = .3^t. It makes sense but I really wish I had access to the video notes. I never got a replacement set, and none of the video links in the notes work. The message I get is “The system cannot find the file specified.” I am trying to use the book as a resource even if not directed to do so but the book doesn’t follow these qa’s and queries in the same order. ------------------------------------------------ self-critique Rating:2