Chap 12 assignment

#$&*

course MTH158

07/18 2:28pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

011. `* 11

* 1.2.13 \ 5. Explain, step by step, how you solved the equation z^2 - z - 6 = 0 using factoring.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Z^2-z-6=0

(z-3)(x+2)=0

{-3, +2}

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION WITH INSTRUCTOR COMMENT:

I factored this and came up with

(z + 2)(z - 3) = 0

Which broke down to

z + 2 = 0 and z - 3 = 0

This gave me the set {-2, 3}

-2 however, doesn't check out, but only 3 does, so the solution is:

z = 3

INSTRUCTOR COMMENT: It's good that you're checking out the solutions, because sometimes we get extraneous roots. But note that -2 also checks: (-2)^2 - (-2) - 6 = 4 + 2 - 6 = 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: * 1.2.14 (was 1.3.6). Explain how you solved the equation v^2+7v+6=0 by factoring.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V^2+7v+6=0

(v+1)(v+6)=0

V={-1,-6}

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION:

v^2+7v+6=0. This factors into

(v + 1) (v + 6) = 0, which has solutions

v + 1 = 0 and v + 6 = 0, giving us

v = {-1, -6}

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.2.20 (was 1.3.12). Explain how you solved the equation x(x+4)=12 by factoring.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X(x+4)=12

X^2+4x=12

X^2+4x-12=0 Distributive Law

(x-2)(x+6)=0 Factor

{2, -6}

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

x(x+4)=12 apply the Distributive Law to the left-hand side:

x^2 + 4x = 12 add -12 to both sides:

x^2 + 4x -12 = 0 factor:

(x - 2)(x + 6) = 0 apply the zero property:

(x - 2) = 0 or (x + 6) = 0 so that

x = {2 , -6} **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: * 1.2.26 \ 38 (was 1.3.18). Explain how you solved the equation x + 12/x = 7 by factoring.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X+12/x=7

X(x+12/x)=7*x

X^2+12=7x

X^2+12-7x=7x-7x

X^2-7x+12=0

(x-3)(x-4)=0

{3,4}

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

x + 12/x = 7 multiply both sides by the denominator x:

x^2 + 12 = 7 x add -7x to both sides:

x^2 -7x + 12 = 0 factor:

(x - 3)(x - 4) = 0 apply the zero property

x-3 = 0 or x-4 = 0 so that

x = {3 , 4} **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: * 1.2.32 (was 1.3.24). Explain how you solved the equation (x+2)^2 = 1 by the square root method.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(x+2)^2=1

X+2=+sqrt1

x+2=1 or x+2=-1

x={3,-1}

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * (x + 2)^2 = 1 so that

x + 2 = ± sqrt(1) giving us

x + 2 = 1 or x + 2 = -1 so that

x = {-1, -3} **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: * 1.2.44 (was 1.3.36). Explain how you solved the equation x^2 + 2/3 x - 1/3 = 0 by completing the square.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X^2+2/3x-1/3=0

(X^2+2/3x-1/3)*3=0*3

X^2+2x-1=0

(3x-1)(x+1)=0

3x-1=0

Or

X+1=0

{1/3, -1}

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * x^2 + 2/3x - 1/3 = 0. Multiply both sides by the common denominator 3 to get

3 x^2 + 2 x - 1 = 0. Factor to get

(3x - 1) ( x + 1) = 0. Apply the zero property to get

3x - 1 = 0 or x + 1 = 0 so that

x = 1/3 or x = -1.

STUDENT QUESTION:

The only thing that confuses me is the 1/3. Is that because of the 3x?

INSTRUCTOR RESPONSE:

You got the equation

(3x - 1) ( x + 1) = 0.

The product of two numbers can be zero only if one of the numbers is zero.

So (3x - 1) ( x + 1) = 0 means that

3x - 1 = 0 or x + 1 = 0. You left out this step in your solution.

x + 1 = 0 is an equation with solution x = -1

Thus the solution to our original equation is

x = 1/3 or x = -1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I start out confused then I read the solution and it makes perfect sense and I get the process.

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: * 1.2.50 \ 52 (was 1.3.42). Explain how you solved the equation x^2 + 6x + 1 = 0 using the quadratic formula.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X^2+6x+1=0

A=1 b=6 c=1

X= [-6+sqrt(6^2-4*1)]

2*1

X=-6+ sqrt(36-4)/2

X=-6+sqrt32/2

X=-6+sqrt32/2

X=-6-sqrt32/2

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

x^2 + 6x + 1 = 0

we identify our equation as a quadratic equation, having the form a x^2 + b x + c = 0 with a = 1, b = 6 and c = 1.

We plug values into quadratic formula to get

x = [-6 ± sqrt(6^2 - 4 * 1 * 1) ] / 2 *1

x = [ -6 ± sqrt(36 - 4) / 2

x = { -6 ± sqrt (32) ] / 2

36 - 4 = 32, so x has 2 real solutions,

x = [-6 + sqrt(32) ] / 2 and

x = [-6 - sqrt(32) ] / 2

Our solution set is therefore

{ [-6 + sqrt(32) ] / 2 , [-6 - sqrt(32) ] / 2 }

Now sqrt(32) simplifies to sqrt(16) * sqrt(2) = 4 sqrt(2) so this solution set can be written

{ [-6 + 4 sqrt(2) ] / 2 , [-6 - 4 sqrt(2) ] / 2 },

and this can be simplified by dividing numerators by 2:

{ -3 + 2 sqrt(2), -3 - 2 sqrt(2) }. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Did I stop too soon?

Your answer was pretty much OK, but you would ideally factor the perfect square out of 32 and simplify the square root to read 4 sqrt(2) / 2 = 2 sqrt(2).

------------------------------------------------

Self-critique rating #$&* Fair

*********************************************

Question: * 1.2.78 \ 72 (was 1.3.66). Explain how you solved the equation pi x^2 + 15 sqrt(2) x + 20 = 0 using the quadratic formula and your calculator.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Pix^2+15sqrt2x+20=0

A=pi b=15sqrt2 c=20

-15sqrt2+/-sqrt(-15sqrt(2))^2-4(pi)(20)/2(pi)

-15sqrt2+/-sqrt-15(4)-4(pi)(20)/6.28

-15(1.414)+/-30-251.2/6.28

-21.21+/-221.2/6.28

-242.41/6.28

-26.12176

confidence rating #$&* -2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Applying the quadratic formula with a = pi, b = 15 sqrt(2) and c = 20 we get

x = [ (-15sqrt(2)) ± sqrt ( (-15sqrt(2))^2 -4(pi)(20) ) ] / ( 2 pi ).

The discriminant (-15sqrt(2))^2 - 4(pi)(20) = 225 * 2 - 80 pi = 450 - 80 pi = 198.68 approx., so there are 2 unequal real solutions.

Our expression is therefore

x = [ (-15sqrt(2)) ± sqrt(198.68)] / ( 2 pi ).

Evaluating with a calculator we get

x = { -5.62, -1.13 }.

DER**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I got completely lost, I think the sqrt and pi confused me because I thought I understood quadratic formula

-15sqrt2+-sqrt(-15sqrt(2))^2-4(pi)(20)/2(pi) has incorrect signs of grouping. You are to take the square root of the entire b^2 - 4 a c expression, but the way you've written it you're just taking the square root of the b^2 term.

Write out the expression ( -b +- sqrt( b^2 - 4 a c) ) / (2 a). Then plug the numbers in, without changing any of the signs of grouping.

The signs of grouping tell you to evaluate b^2 - 4 a c before taking the square root. The result is then alternately added to and subtracted from -b to give you the numerator of your expression. The denominator is found be evaluating 2 a.

------------------------------------------------

Self-critique rating #$&* Confused

*********************************************

Question: * 1.2.106 \ 98 (was 1.3.90). Explain how you set up and solved an equation for the problem. Include your equation and the reasoning you used to develop the equation. Problem (note that this statement is for instructor reference; the full statement was in your text) box vol 4 ft^3 by cutting 1 ft sq from corners of rectangle the L/W = 2/1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Length of box x-2ft

Width of box x-1ft

Height of box 1ft

4=1(x-2)(2x-2)

2x^2+2x-4x+4=4

2x^2+6x+4/2=4/2

X^2-3x+2=2

(x-2)(x-1)-2=2-2

X^2-3x=0

X(x-3)=0

X=0

X= 3

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Using x for the length of the shorter side of the rectangle the 2/1 ratio tells us that the length is 2x.

If we cut a 1 ft square from each corner and fold the 'tabs' up to make a rectangular box we see that the 'tabs' are each 2 ft shorter than the sides of the sheet. So the sides of the box will have lengths x - 2 and 2x - 2, with measurements in feet. The box so formed will have height 1 so its volume will be

volume = ht * width * length = 1(x - 2) ( 2x - 2).

If the volume is to be 4 we get the equation

1(x - 2) ( 2x - 2) = 4.

Applying the distributive law to the left-hand side we get

2x^2 - 6x + 4 = 4

Divided both sides by 2 we get

x^2 - 3x +2 = 2.

We solve by factoring. x^2 - 3x + 2 = (x - 2) ( x - 1) so we have

(x - 2) (x - 1) = 2. Subtract 2 from both sides to get

x^2 - 3 x = 0 the factor to get

x(x-3) = 0. We conclude that

x = 0 or x = 3.

We check these results to see if they both make sense and find that x = 0 does not form a box, but x = 3 does.

• So our solution to the equation is x = 3.

x stands for the shorter side of the rectangle, which is therefore 3. The longer side is double the shorter, or 6.

Thus to make the box:

We take our 3 x 6 rectangle, cut out 1 ft corners and fold it up, giving us a box with dimensions 1 ft x 1 ft x 4 ft.

This box has volume 4 cubic feet, confirming our solution to the problem.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&* Fair

*********************************************

Question: * 1.2.108 \ 100 (was 1.3.96). Explain how you set up and solved an equation for the problem. Include your equation and the reasoning you used to develop the equation. Problem (note that this statement is for instructor reference; the full statement was in your text) s = -4.9 t^2 + 20 t; when 15 m high, when strike ground, when is ht 100 m.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

- 4.9t^2+20t=15

-4.9t^2+20t-15=15-15

-4.9t^2+20t=0

T={-20+/-sqrt[20^2-4(4.9)(-15)]}/2(-4.9)

T=-20+/-sqrt[400-19.6-15]/-9.8

confidence rating #$&* -2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * To find the clock time at which the object is 15 m off the ground we set the height s equal to 15 to get the equation

-4.9t^2 + 20t = 15

Subtracting 15 from both sides we get

-4.9t^2 +20t - 15 = 0

so that

t = { -20 ± sqrt [20^2 - 4(-4.9)(-15) ] } / 2(-4.9)

Numerically these simplify to t = .99 and t = 3.09.

Interpretation:

• The object passes the 15 m height on the way up at t = 99 and again on the way down at t = 3.09.

To find when the object strikes the ground we set s = 0 to get the equation

-4.9t^2 + 20t = 0

which we solve to get

t = [ -20 ± sqrt [20^2 - 4(-4.9)(0)] ] / 2(-4.9)

This simplifies to

t = [ -20 +-sqrt(20^2) ] / (2 * -4.9) = [-20 +- 20 ] / (-9.8).

The solutions simplify to t = 0 and t = 4.1 approx.

Interpretation:

The object is at the ground at t = 0, when it starts up, and at t = 4.1 seconds, when it again strikes the ground.

To find when the altitude is 100 we set s = 100 to get

-4.9t^2 + 20t = 100.

Subtracting 100 from both sides we obtain

-4.9t^2 +20t - 100 = 0

which we solve using the quadratic formula. We get

t = [ -20 ± sqrt (20^2 - 4(-4.9)(-100)) ] / 2(-4.9)

The discriminant is 20^2 - 4 * -4.9 * -100, which turns out to be negative so we do not obtain a solution.

Interpretation:

We conclude that this object will not rise 100 ft. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I am confused about the discriminant. I started doing the calculations and my numbers don’t look anything like the solution.

your expression

T=-20+/-sqrt[400-19.6-15]/-9.8

does have the right numbers in the discriminant but you missed a - sign, and you haven't indicated all the operations.

You also need to group the numerator. The expression you get would be

T= (-20+/-sqrt[400-(-19.6) * (-15) ] )/ (-9.8).

The discriminant is 400 - (-19.6) * (-15) = 400 - 296 = 104. So our expression becomes

(-20 +- sqrt(104) ) / (-9.8). sqrt(104) is about 10.2, so the result is about

(-20 +- 10.2) / (-9.8). This simplifies to the given results.

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: * Add comments on any surprises or insights you experienced as a result of this assignment.

The last problem was very confusing.

"

Check my notes. I suggest you submit this query again to be sure you are constructing these expressions correctly.

#$&*