Assignment 5a

#$&*

course mth 163

6/5 2pm

005.*********************************************

Question: `q001. Note that this assignment has 8 questions

Evaluate the function y = x^2 for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The y values are 9,4,1,0,1,4,9

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You should have obtained y values 9, 4, 1, 0, 1, 4, 9, in that order.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q002. Evaluate the function y = 2^x for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The y values are 1/8,1/4,1/2,1,2,4,8

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

By the laws of exponents, b^-x = 1 / b^x. So for example 2^-2 = 1 / 2^2 = 1/4.

Your y values will be 1/8, 1/4, 1/2, 1, 2, 4 and 8. Note that we have used the fact that for any b, b^0 = 1.

It is a common error to say that 2^0 is 0. Note that this error would interfere with the pattern or progression of the y values.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q003. Evaluate the function y = x^-2 for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The y values are 1/9, 1/4, 1,undefined, 1, 1/4, 1/9

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

By the laws of exponents, x^-p = 1 / x^p. So x^-2 = 1 / x^2, and your x values should be 1/9, 1/4, and 1. Since 1 / 0^2 = 1 / 0 and division by zero is not defined, the x = 0 value is undefined. The last three values will be 1, 1/4, and 1/9.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q004. Evaluate the function y = x^3 for x values -3, -2, -1, 0, 1, 2, and 3. What are your y values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The y values are -27, -8, -1, 0, 1, 8, 27

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The y values should be -27, -8, -1, 0, 1, 8, 27

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q005. Sketch graphs for y = x^2, y = 2^x, y = x^-2 and y = x^3, using the values you obtained in the preceding four problems. Describe the graph of each function.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph for y = x^2 is a parabola opening up.

The graph for y = x^-2 has two different lines one on the left side of the y axis and one on the right side of the y axis. They start down very low almost touching the x axis then they slightly increase then they run parallel upwards with the y axis but not touching it.

The graph for y = 2^x starts very close to the x axis on the negative side of the x axis and slowly increases at first then starts to climb very rapidly.

The graph for y = x^3 starts in the negative part of both the y and x axis and slightly verves to the right then does a harder turn to the right through the (0,0) point then curves back to the left slightly.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The graph of y = x^2 is a parabola with its vertex at the origin. It is worth noting that the graph is symmetric with respect to the y-axis. That is, the graph to the left of the y-axis is a mirror image of the graph to the right of the y-axis.

The graph of y = 2^x begins at x = -3 with value 1/8, which is relatively close to zero. The graph therefore starts to the left, close to the x-axis. With each succeeding unit of x, with x moving to the right, the y value doubles. This causes the graph to rise more and more quickly as we move from left to right. The graph intercepts the y-axis at y = 1.

The graph of y = x^-2 rises more and more rapidly as we approach the y-axis from the left. It might not be clear from the values obtained here that this progression continues, with the y values increasing beyond bound, but this is the case. This behavior is mirrored on the other side of the y-axis, so that the graph rises as we approach the y-axis from either side. In fact the graph rises without bound as we approach the y-axis from either side. The y-axis is therefore a vertical asymptote for this graph.

The graph of y = x ^ 3 has negative y values whenever x is negative and positive y values whenever x is positive. As we approach x = 0 from the left, through negative x values, the y values increase toward zero, but the rate of increase slows so that the graph actually levels off for an instant at the point (0,0) before beginning to increase again. To the right of x = 0 the graph increases faster and faster.

Be sure to note whether your graph had all these characteristics, and whether your description included these characteristics. Note also any characteristics included in your description that were not included here.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q006. Make a table for y = x^2 + 3, using x values -3, -2, -1, 0, 1, 2, 3. How do the y values on the table compare to the y values on the table for y = x^2? How does the graph of y = x^2 + 3 compare to the graph of y = x^2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The values for y = x^2+3 are 12, 7, 4, 3, 4, 7, 12. They are the y values for y = x^2 with 3 added to each value.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

A list of the y values will include, in order, y = 12, 7, 4, 3, 4, 7, 12.

A list for y = x^2 would include, in order, y = 9, 4, 1, 0, 1, 4, 9.

The values for y = x^2 + 3 are each 3 units greater than those for the function y = x^2.

The graph of y = x^2 + 3 therefore lies 3 units higher at each point than the graph of y = x^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q007. Make a table for y = (x -1)^3, using x values -3, -2, -1, 0, 1, 2, 3. How did the values on the table compare to the values on the table for y = x^3? Describe the relationship between the graph of y = (x -1)^3 and y = x^3.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The values for y = (x-1)^3 are -64, -27, -8, -1, 0, 1, 8. Compared to the y values of y = x^3 it seems that the y values have moved up one spot. For example in x^3 the x value -3 would produce y value -27, but for (x-1)^3 the x value -3 produces -64.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The values you obtained should have been -64, -27, -8, -1, 0, 1, 8.

The values for y = x^3 are -27, -8, -1, 0, 1, 8, 27.

The values of y = (x-1)^3 are shifted 1 position to the right relative to the values of y = x^3. The graph of y = (x-1)^3 is similarly shifted 1 unit to the right of the graph of y = x^3.

STUDENT QUESTION

I assumed the graph was shifted 1 unit down since the graph passes through (0, -1) instead of origin. Then again, it passes through (1, 0), so could it be said that the graph is shifted 1 unit down OR 1 unit to the right?

INSTRUCTOR RESPONSE

Based on those two points that would be correct. Nowever, for example, (-2, -8) shifts to (-1, -8), a shift to the right, but not to (-2, -9), as would be the case if this was a downward shift.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q008. Make a table for y = 3 * 2^x, using x values -3, -2, -1, 0, 1, 2, 3. How do the values on the table compare to the values on the table for y = 2^x? Describe the relationship between the graph of y = 3 * 2^x and y = 2^x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The values were .375, .75, 1.5, 3, 6, 12, 24. They are the y values for y = 2^x times 3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You should have obtained y values 3/8, 3/4, 3/2, 3, 6, 12 and 24.

Comparing these with the values 1/8, 1/4, 1/2, 1, 2, 4, 8 of the function y = 2^x we see that the values are each 3 times as great.

The graph of y = 3 * 2^x has an overall shape similar to that of y = 2^x, but each point lies 3 times as far from the x-axis. It is also worth noting that at every point the graph of y = 3 * 2^x is three times as 'high' as the corresponding point of y = 2^x.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q008. Make a table for y = 3 * 2^x, using x values -3, -2, -1, 0, 1, 2, 3. How do the values on the table compare to the values on the table for y = 2^x? Describe the relationship between the graph of y = 3 * 2^x and y = 2^x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The values were .375, .75, 1.5, 3, 6, 12, 24. They are the y values for y = 2^x times 3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You should have obtained y values 3/8, 3/4, 3/2, 3, 6, 12 and 24.

Comparing these with the values 1/8, 1/4, 1/2, 1, 2, 4, 8 of the function y = 2^x we see that the values are each 3 times as great.

The graph of y = 3 * 2^x has an overall shape similar to that of y = 2^x, but each point lies 3 times as far from the x-axis. It is also worth noting that at every point the graph of y = 3 * 2^x is three times as 'high' as the corresponding point of y = 2^x.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: `q008. Make a table for y = 3 * 2^x, using x values -3, -2, -1, 0, 1, 2, 3. How do the values on the table compare to the values on the table for y = 2^x? Describe the relationship between the graph of y = 3 * 2^x and y = 2^x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The values were .375, .75, 1.5, 3, 6, 12, 24. They are the y values for y = 2^x times 3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You should have obtained y values 3/8, 3/4, 3/2, 3, 6, 12 and 24.

Comparing these with the values 1/8, 1/4, 1/2, 1, 2, 4, 8 of the function y = 2^x we see that the values are each 3 times as great.

The graph of y = 3 * 2^x has an overall shape similar to that of y = 2^x, but each point lies 3 times as far from the x-axis. It is also worth noting that at every point the graph of y = 3 * 2^x is three times as 'high' as the corresponding point of y = 2^x.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#Good responses. Let me know if you have questions. &#