#$&* course mth 164 10/24 5pm 008. IdentitiesGoals for this Assignment include but are not limited to the following:
.............................................
Given Solution: `aThe Pythagorean Theorem applies to any point (x,y) on the unit circle, where we can construct a right triangle with horizontal and vertical legs x and y and hypotenuse equal to the radius r of the circle. Thus by the Pythagorean Theorem we have x^2 + y^2 = r^2. Now since sin(theta) = y/r and cos(theta) = x/r, we have sin^2(theta) + cos^2(theta) = (y/r)^2 + (x/r)^2 = y^2/r^2 + x^2/r^2 = (y^2 + x^2) / r^2 = r^2 / r^2 = 1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Where do you get r^2 / r^2 = 1 from? ------------------------------------------------ Self-critique Rating:2
.............................................
Given Solution: `aStarting with tan^2(theta) + 1 = sec^2(theta) we first rewrite everything in terms of sines and cosines. We know that tan(theta) = sin(theta)/cos(theta) and sec(theta) = 1 / cos(theta). So we have sin^2(theta)/cos^2(theta) + 1 = 1 / cos^2(theta). If we now simplify the equation, multiplying both sides by the common denominator cos^2(theta), we get sin^2(theta)/cos^2(theta) * cos^2(theta)+ 1 * cos^2(theta)= 1 / cos^2(theta) * cos^2(theta). We easily simplify this to get sin^2(theta) + cos^2(theta) = 1, which is thus seen to be equivalent to the original equation tan^2(theta) + 1 = sec^2(theta). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. Prove that csc^2(theta) - cot^2(theta) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Rewrite the problem first: 1/sin^2(theta) - cos^2(theta) / sin^2(theta) = 1 Multiply both sides by sin^2(theta): 1 - cos^2(theta) = sin^2(theta), then add cos^2(theta) to both sides to get 1 = sin^2(theta) + cos^2(theta), this proves the above equation. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aRewriting in terms of sines and cosines we get 1 / sin^2(theta) - cos^2(theta)/sin^2(theta) = 1. We now multiply through by the common denominator sin^2(theta) to get 1 / sin^2(theta) * sin^2(theta) - cos^2(theta)/sin^2(theta) * sin^2(theta) = 1 * sin^2(theta), or 1 - cos^2(theta) = sin^2(theta). This is easily rearranged to give us sin^2(theta) + cos^2(theta) = 1, which we know to be true. The original equation is thus equivalent to this true equation, and is therefore true. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. Prove that csc^2(theta) - cot^2(theta) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Rewrite the problem first: 1/sin^2(theta) - cos^2(theta) / sin^2(theta) = 1 Multiply both sides by sin^2(theta): 1 - cos^2(theta) = sin^2(theta), then add cos^2(theta) to both sides to get 1 = sin^2(theta) + cos^2(theta), this proves the above equation. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aRewriting in terms of sines and cosines we get 1 / sin^2(theta) - cos^2(theta)/sin^2(theta) = 1. We now multiply through by the common denominator sin^2(theta) to get 1 / sin^2(theta) * sin^2(theta) - cos^2(theta)/sin^2(theta) * sin^2(theta) = 1 * sin^2(theta), or 1 - cos^2(theta) = sin^2(theta). This is easily rearranged to give us sin^2(theta) + cos^2(theta) = 1, which we know to be true. The original equation is thus equivalent to this true equation, and is therefore true. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&! ********************************************* Question: `q003. Prove that csc^2(theta) - cot^2(theta) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Rewrite the problem first: 1/sin^2(theta) - cos^2(theta) / sin^2(theta) = 1 Multiply both sides by sin^2(theta): 1 - cos^2(theta) = sin^2(theta), then add cos^2(theta) to both sides to get 1 = sin^2(theta) + cos^2(theta), this proves the above equation. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aRewriting in terms of sines and cosines we get 1 / sin^2(theta) - cos^2(theta)/sin^2(theta) = 1. We now multiply through by the common denominator sin^2(theta) to get 1 / sin^2(theta) * sin^2(theta) - cos^2(theta)/sin^2(theta) * sin^2(theta) = 1 * sin^2(theta), or 1 - cos^2(theta) = sin^2(theta). This is easily rearranged to give us sin^2(theta) + cos^2(theta) = 1, which we know to be true. The original equation is thus equivalent to this true equation, and is therefore true. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&!#*&! ********************************************* Question: `q003. Prove that csc^2(theta) - cot^2(theta) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Rewrite the problem first: 1/sin^2(theta) - cos^2(theta) / sin^2(theta) = 1 Multiply both sides by sin^2(theta): 1 - cos^2(theta) = sin^2(theta), then add cos^2(theta) to both sides to get 1 = sin^2(theta) + cos^2(theta), this proves the above equation. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aRewriting in terms of sines and cosines we get 1 / sin^2(theta) - cos^2(theta)/sin^2(theta) = 1. We now multiply through by the common denominator sin^2(theta) to get 1 / sin^2(theta) * sin^2(theta) - cos^2(theta)/sin^2(theta) * sin^2(theta) = 1 * sin^2(theta), or 1 - cos^2(theta) = sin^2(theta). This is easily rearranged to give us sin^2(theta) + cos^2(theta) = 1, which we know to be true. The original equation is thus equivalent to this true equation, and is therefore true. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&!#*&!#*&!