Query 06

#$&*

course mth 279

Query 06 Differential Equations*********************************************

Question: 3.3.4. If the equation is exact, solve the equation (6 t + y^3 ) y ' + 3 t^2 y = 0, with y(2) = 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: the de is not exact

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. *

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

the de is not exact

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First rewriting the equation

M(t,y)+N(t,y)*y'=0

y'=- ycos(ty)+1/tcos(ty)+2ye^y^2

(tcos(ty)+2ye^y^2)y'=-(ycos(ty)+1)

(ycos(ty)+1)+(tcos(ty)+2ye^y^2)y'=0

Now I can see that M(t,y)=ycos(ty)+1 and N(t,y)=tcos(ty)+2ye^y^2

Now I can check and see if this is a exact d.e

-tysin(ty)+cos(ty)=-tysin(ty)+cos(ty)

H(t,y)=C

Now by calculating H by finding the partial anti derivative of M with respect to T

H(t,y)=integral sign(ycos(ty)+1)dt

=y integral sign cos(ty)dt+integral sign dt

=y 1/y sin(ty)+t+p(y)

=sin(ty)+t+p(y)

H(t,y)=sin(ty)+t+p(y)

to find p(y) I will take the partial derivative of H with the respect to y

partial/partial y (sin(ty)+t+p(y))=tcos(ty)+2ye^y^2

cos(ty)*t+0+dp(y)/dy=tcos(ty)+2ye^y^2

cos(ty)*t+dp(y)/dy=tcos(ty)+2ye^y^2

dp(y)/dy=2ye^y^2

p(y)=integral 2ye^y^2

p(y)=e^y^2

H(t,y)=sin(ty)+e^y^2+t

sin(ty)+e^y^2+t=C

NOW I CAN FIND C y applying the intial value

sin(pie*0)+e^0^2+pie=C

0+1+pie=C

1+PIE=c

sin(ty)+e^y^2+t=pie+1

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First I will see if the equation is exact

M(t,y)=t^2+y^2 sin(t)

partial N/partial t =partial/partial y (t^2+y^2 sin(t))

=0+sin(t) partial/partial y (y^2)

=sin(t)*2y

now by taking the anti derivative

N=integral sign 2ysin(t)dt

=2y integral sign sin(t)dt

=2y(-cos(t))+p(y)

=-2ycos(t)+p(y)

M(t,y)=-2ycos(t)+p(y)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

&#Good responses. Let me know if you have questions. &#