Assignment 13b

#$&*

course mth 164

11/26 6pm

SOLUTIONS/COMMENTARY ON QUERY 13Asst # 13

04-01-2002

......!!!!!!!!...................................

20:43:50

20:43:55

......!!!!!!!!...................................

**** Query problem 9.4.12 graph of hyperbola with vertices at (-4,0) and (4,0), asymptote y = 2x **** Give the equation of the specified hyperbola.

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X^2/a^2 - y^2/b^2, so a= 4 and b= 8 this gives us:

X^2 / 16 - y^2 / 64

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The equation of a hyperbola centered at the origin is

x^2 / a^2 - y^2 / b^2 = 1,

where (a, 0) and (-a, 0) are the vertices and y = +-b / a * x are the asymptotes.

In the present case we have a = 4 and y = 2 x is an asymptote.

It follows that b / a = 2 so that b = 2 a = 2 * 4 = 8.

Thus the equation is

x^2 / 4^2 - y^2 / 8^2 = 1 or

x^2 / 16 - y^2 / 64 = 1. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

Explain how you know whether the equation is x^2 / a^2 - y^2 / b^2 = 1, x^2 / a^2 + y^2 / b^2 = 1 or -x^2 / a^2 + y^2 / b^2 = 1.

......!!!!!!!!...................................

13:18:39

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Because for a hyperbola with a center at (0,0) and transverse along the x- axis the equation is x^2/a^2 - y^2/b^2 = 1. I know it is along the x - axis because vertices is (4,0).

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The point (4, 0) wouldn't make sense in an equation of the form -x^2 / a^2 + y^2 / b^2 = 1, since for this point -x^2 / a^2 would be negative and y^2 / b^2 would be positive, making the left-hand side negative while the right-hand side is 1.

For large x and y the value of x^2 / a^2 + y^2 / b^2 would be large and couldn't be equal to 1.

The form x^2 / a^2 - y^2 / b^2 = 1 makes sense for (4, 0) and also for large x and y, since the difference x^2 / a^2 - y^2 / b^2 could indeed equal 1 even for large x and y. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):Is my answer correct?

@&

I would accept this answer, but the answer could be improved by stating that (4, 0) could not possibly be a point of -x^2 / a^2 + y^2 / b^2 = 1, because for any point along the x axis y = 0 and this would give us -x^2 / a^2 = 1. Since x^2 and a^2 are both positive, the left-hand side would have to be negative and could not possibly be equal to 1.

*@

------------------------------------------------

Self-critique Rating:2

**** Query problem 9.4.26 graph of hyperbola defined by rectangle of width 4, centered at the origin, lines y = + - 2x passing through diagonals, opening right and left. **** Give the equation of the specified hyperbola.

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If the width is 4 that means the vertices are (-2,0) and (2,0). So a = 2 to find b is b = 2(a) which is 4 the equation would then be:

X^2 / 4 - y^2 / 16 = 1

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The width of the rectangle is 4 so its vertical sides are at x = -2 and x = 2.

Since the parabola opens to the right the vertices are on the right and left sides of the rectangle, at (-2, 0) and (2, 0).

The lines y = +- 2 x are the asymptotes.

The form of the equation is x^2 / a^2 - y^2 / b^2 = 1, with vertices (a, 0) and (-a, 0) and asymptotes y = +- b / a * x.

It follows that a = 2 (vertices at (-a,0) and (a,0)) and b / a = 2 (since y = +-2 x = +- b / a * x).

We get b = 2 a = 2 * 2 = 4 so the equation is

x^2 / 2^2 - y^2 / 4^2 = 1 or

x^2 / 4 - y^2 / 16 = 1. **

20:59:30

20:59:40

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Query problem 9.6.6 conic defined by a r = 6 / (8 + 2 sin(`theta)). **** What conic is defined by the given polar equation?

......!!!!!!!!...................................

21:00:25

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The equation represents an ellipse. Because you would divide both the numerator and the denominator by 8 to get r = (3/4) / 1+ ¼ sin(theta) and since ¼ is less than 1 it is an ellipse.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since e < 1 the conic is an elipse.

** Good. For reference two derivations are included below: **

** Derivation of forms of a conic:

If the directrix D oriented perpendicular to the polar axis lies at distance p in the negative direction from that axis, then the distance from point P = (r, `theta) to the directrix will be measured in the direction parallel to the polar axis. r cos(`theta) is the displacement of P with respect to the polar axis do this distance is

dist(D,P) = r cos(`theta) + p.

If the focus is at the pole then dist(F,P) = distance from pole to P = r.

The ratio of the latter distance to the former is the eccentricity so we have:

r / [ r cos(`theta) + p ] = e

r = e r cos(`theta) + e p

r - e r cos(`theta) = e p

r = e p / (1 - e cos(`theta) ).

For directrix p units above pole parallel to polar axis we have for point P

dist(D, P) = r sin(`theta) - p

dist(F, P) = r so

r / [ r sin(`theta) - p ] = e

r = e r sin(`theta) - e p

etc.

r = e p / (e r sin`theta - 1) **

** We can convert to rectangular coordinates. We can rearrange the equation to get

8 r + 2 r sin(`theta) = 6. Since r sin(`theta) = y and r = `sqrt(x^2+y^2) we have

8 `sqrt(x^2+y^2) + 2 y = 6. Getting the `sqrt on one side we have

`sqrt(x^2 + y^2) = (6-2y)/8. Squaring both sides we have

x^2 + y^2 = (36 - 24 y + 4y^2) / 64 so that

64 x^2 + 60 y^2 + 24 y = 36.

If we complete the square on y we do end up with a positive number on the right-hand side, so we indeed have an ellipse. **

.........................................

21:00:26

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** How do you know that the conic is the one you indicated?

......!!!!!!!!...................................

21:02:19

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Because of the equation r = ep/1-eSin(theta). If e is less than 1 it is an ellipse. And in this case e = ¼ .

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT SOLUTION: After dividing both numerator and denominator by 8, I get r = (3/4) / (1+ 1/4sin('theta)) so I know that e = 1/4 which is less than 1. This results in an elipse.

.........................................

21:02:20

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** What is the position of the directrix, if one exists?

......!!!!!!!!...................................

21:03:05

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It is parallel to the polar axis at a distance of 3 points above the pole. Because ¾ / ¼ = 3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT ANSWER: The directrix is parallel to the polar axis at a distance of p = 3 above the pole.

.........................................

21:03:06

21:03:13

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Query problem 9.6.16 identify and graph r(2-cos(`theta)) = 2. **** Describe in detail the graph you obtain from the given equation.

......!!!!!!!!...................................

21:07:33

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The equation has to be rearranged to r = 2 / 2 - cos(theta) divide top and bottom by 2 to find out that it represents an ellipse because ½ is less than 1. The directrix is perpendicular to the polar axis at a distance 2 units to the left of the pole.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The conic is a parabola which opens to the right, with a vertex at (1/2, 'pi), a directrix that passes through (1, 'pi) that is perpendicular to the polar axis. The focus is at the pole. The parabola also contains the points (1, 'pi/2) and (1, 3'pi/2).

** Good.

The equation rearranges to give you r = 2 / (2 - cos(`theta) );

dividing numerator and denominator by 2 you get r = 1 / (1 - 1/2 cos(`theta) ).

So e = 1/2 and since ep = 1/2 p = 1 we have p = 2. **

.........................................

21:07:34

21:07:38

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): In order for this to be a parabola e would have to equal 1 is this correct? In is problem I think that e is ½ which means it is an ellipse. If this is not correct please let me know.

@&

You are correct. e = 1/2 so this is an ellipse.

We can verify that for theta values 0, pi/2, pi and 3 pi/2 the r values are respectively 2, 1, 2/3 and 1, so the points are (2, 0 radians), (1, pi/2 radians), (2/3, pi radians) and (1, 3 pi/2 radians). These points correspond to (x, y) coordinates (2, 0), (0, 1), (-2/3, 0) and (0, -1). These points could not lie on a parabola; they are compatible with an ellipse.

*@

------------------------------------------------

Self-critique Rating:3

**** Query problem 9.6.28 convert to rectangular coordinates r(2-cos(`theta)) = 2. **** What is the rectangular coordinate form of the given equation, and how did you obtained it a?

......!!!!!!!!...................................

21:12:21

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don’t know how to do this yet I am still working on it.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

r ( 2- cos ('theta)) = 2

2r - r cos('theta) = 2 distribute the r

2r = 2 + r cos('theta) rearrange

4r^2 = ( 2 + r cos('theta))^2 square both sides

4 (x^2 + y^2) = (2 + x)^2 use transformations

4x^2 + 4y^2 = x^2 + 4x +4 distribute

4y^2 = -3x^2 + 4x +4 isolate the y

** Keeping the equation in the standard rectangular form of a conic we have

3 x^2 + 4 y^2 - 4 x - 4 = 0.

From this form it should evident that completing the square on x will give you the standard equation of an ellipse. **

.........................................

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#