#$&*
course Phy 121
Wed 03 Nov 2010 05:16:23 AM EDT
ph1 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.
Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.
Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.
*********************************************
Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.
Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:
· The lack of precision of the TIMER program.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
At that precision level the TIMER app may be sufficient. Any more than that and I would consider at a minimum a circuit using a HPET or similar device.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
That's all according to which event triggers the recording.
At the very core, the Windows API (at the C level) requires each application to register a pointer to a callback function in the process's memory heap (which will quite literally process all signals to that process) and sit in a loop until a certain exit sentinel is provided to shut down the process. There are different types of signals, but there are two in particular that stand out here: WM_LBUTTONDOWN and WM_LBUTTONUP. Both of them are important because of another fact.
See in Visual Basic, there are these easier-to-use application signals called Events. They make better logical sense, but understand its just a layer on top of the message queue system (the technical way it does things). Visual Basic has three basic mouse events that apply here: OnMouseDown, OnMouseUp, and OnClick.
The OnMouseDown Form event is the result of the Window Mouse Message signal any of WM_LBUTTONDOWN, WM_MBUTTONDOWN, or WM_RBUTTONDOWN.
The OnMouseUp Form event is the result of the Window Mouse Message signal any of WM_LBUTTONUP, WM_MBUTTONUP, or WM_RBUTTONUP.
The OnClick Form event is called after __both__ OnMouseDown and OnMouseUp events have been signaled and event procedures have been executed. It is a separate event, and it is the recommended use of any Form button and works along with the animation of the button press and release to make applications seem more interactive I guess (at least a 1995 version of interactive).
The best design for this type of app is to record the new time at the OnMouseDown event in order to capture the first instant it was pressed, minus the time it takes to process a keyboard interrupt (less than 100 operations), dispatch a message through the messaging system to a window process (less than 100 operations), run the callback to signal the event (not much), and then run the event. All of that happens quickly, but understand that the difference between an OnClick and an OnMouseDown event used to be a few milliseconds I think. Nowadays it probably isn't even more than a few microseconds I'd say, but then that's all according to clock speed. My 2.2 GHz Core 2 Duo chills at 800 MHz until it finds enough bytes to chew on, then it jumps around as it sees fit through four different states (800MHz, 1.2GHz, 1.6GHz, and 2.2GHz) along either of the two cores.
Other than that, I would factor in the reflex timing of the human interaction with the computer as a response to the physical phenomena. In another way, a person may not be able to press the mouse button at close enough to the exact moment where the physical event occurred.
Factoring both human response time and event dispatching time (if Visual Basic Form_OnClick event is used), you can get quite up to around 20-50 ms delay rather easily with a margin of error, +/- 20 or so ms due to the preemptive multitasking operating system design--in fact, the Windows OS never seems to make the promise of dispatching any window message ever. Just depends on what's going on in other processes, e.g. Windows Update, Background Intelligent Transfer Service, Perfo6.666666667rmance Logs, blah, blah, blah.
Tip: Want to know how to be pretty dead-on? Don't laugh. Use DOS. It's a real-time OS. Keyboard interrupts can be dispatched via assembler in just a few processor commands, on the order of 10 operations or less. When done in C, no more than 15-20 operations should be expected (if that many). At least that's one way to do it. Then there's a few real-time schedulers for Linux and I think there's one for Windows as well. But, don't expect to do anything other than that real time process that is running for the processor(s)/core(s) the process has an affinity to. It simply will not happen, the scheduler yields the right of way to the real-time process that is running. I think I actually crashed a system before by setting a process to real-time when then I discovered that the window itself couldn't be drawn (a specific Windows process is responsible for passing messages back and forth, and it was getting ignored) because the rest of the OS simply yielded to the process. This situation is called a dead-lock, and occurred because the process was trying to draw the window and the OS was waiting for the process to finish. The reset button got pressed because nothing worked at all.
#$&*
· Actual differences in the time required for the object to travel the same distance.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
#$&*
· Differences in positioning the object prior to release.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
#$&*
*********************************************
Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?
· The lack of precision of the TIMER program.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
#$&*
· Actual differences in the time required for the object to travel the same distance.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
They certainly do exist. If the manner in which one releases the object differs (as it will), then the initial velocity may be offset. This will be reflected in future events (early, increasingly). Probably not much unless it was obviously a lot of force.
#$&*
· Differences in positioning the object prior to release.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Sure, friction may differ with texture. Texture is natural and expected. It is all the same material though, and I would expect very similar friction with a smoothed over surface, irregardless of any other texture factors. Assuming the ramp is level and everything is built in nice straight lines of equal length, I would expect to see no difference.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Very similar to my other note. A very real factor, probably one of the slowest delays in the system is the human reaction time.
#$&*
*********************************************
Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.
· The lack of precision of the TIMER program.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Rebuild using HPET (beware of changing clock speeds when using certain HPETs, they throw off measurements in some cases).
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I like the idea of putting the timer in the video with the event. That's a great way, but be sure your camera can pick up the motion quick enough to not blur it too much to read it.
#$&*
· Actual differences in the time required for the object to travel the same distance.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Build a better rig. ?
#$&*
· Differences in positioning the object prior to release.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Give it a seat and a mechanical release mechanism.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Use the sounds in the recording to make the distinctions of start (sound event) and end (sound event). Modern and cheap audio recording equipment is easily capable of 44,100 samples per second. Just measure the difference in frames and convert it back out to time using the frame rate (44,100 is CD-quality audio). That is extremely high resolution and way more precise than anything you can see on modern video equipment (not even in BluRay). Furthermore, the intervals of the 44,100 or so audio samples per second are pretty close to dead-on right even with cheap equipment because they are generated by a quartz crystal clock, which is more accurate than a mechanical clock (which is accurate enough for most things dealing in time). Record the sound, and let the truth be heard (and it will sound so much clearer then). An easy way to analyze the audio is using a audio editor (which illustrates the corresponding sound waves). Open source Audacity is sufficient.
We've been using Audacity for that very purpose in the lab. I've been using it for a couple of years. It's way more precise than the junk used in most physics labs. A good photogate with the right software is hard to beat, but most of the software doesn't come close. I believe Audacity can be set at up to 88,200 samples per second.
The only real uncertainty there is locating the precise beginning of the sound event. The event builds gradually over a period that's often on the order of 1/10,000 second, which often limits the precision to about that level.
#$&*
*********************************************
Question: If, as in the object-down-an-incline experiment, you know the distance an object rolls down an incline and the time required, explain how you will use this information to find the object 's average speed on the incline.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
In order to calculate average velocity, we only need to know the amount of space traversed and the amount of time it takes to traverse the amount of space.
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: If an object travels 40 centimeters down an incline in 5 seconds then what is its average velocity on the incline? Explain how your answer is connected to your experience.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
40 cm/5 sec = 8 cm / sec
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: If the same object requires 3 second to reach the halfway point, what is its average velocity on the first half of the incline and what is its average velocity on the second half?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
20 cm/3 sec = 6.7 cm / sec for the first half
20 cm/2 sec = 10 cm / sec for the second half
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qAccording to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
I would say exactly half. But I'm just guessing, it may not be.
confidence rating #$&*: 2
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qNote that for a graph of y vs. x, a point on the x axis has y coordinate zero and a point on the y axis has x coordinate zero. In your own words explain why this is so.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
Sounds like your talking about the one and the same point, { (x, y) | (0, 0) }, the origin point. It would occur on a line because there is only a slope and no y-intercept (0). That is, if you are talking about linear functions. Not sure about other functions.
confidence rating #$&*: 2
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qOn a graph of frequency vs. pendulum length (where frequency is on the vertical axis and length on the horizontal), what would it mean for the graph to intersect the vertical axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the vertical axis)? What would this tell you about the length and frequency of the pendulum?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
It would mean the pendulum has no length (range at x=0). Logically, it should intercept at (0, 0) (domain at y=0) if present, and I say if present because a pendulum of no measurable length is not a pendulum at all.
Good, but note that as length approaches zero, period approaches zero, but frequency approaches infinity.
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qOn a graph of frequency vs. pendulum length, what would it mean for the graph to intersect the horizontal axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the horizontal axis)? What would this tell you about the length and frequency of the pendulum?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
It would mean the pendulum frequency is at 0 for a given length. That I know of, there is not such a pendulum.
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qIf a ball rolls down between two points with an average velocity of 6 cm / sec, and if it takes 5 sec between the points, then how far apart are the points?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
6 cm / sec × 5 sec = 30 cm
30 cm apart
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
`aOn the average the ball moves 6 centimeters every second, so in 5 seconds it will move 30 cm.
The formal calculation goes like this:
We know that vAve = `ds / `dt, where vAve is ave velocity, `ds is displacement and `dt is the time interval.
It follows by algebraic rearrangement that `ds = vAve * `dt.
We are told that vAve = 6 cm / sec and `dt = 5 sec. It therefore follows that
`ds = 6 cm / sec * 5 sec = 30 (cm / sec) * sec = 30 cm.
The details of the algebraic rearrangement are as follows:
vAve = `ds / `dt. We multiply both sides of the equation by `dt:
vAve * `dt = `ds / `dt * `dt. We simplify to obtain
vAve * `dt = `ds, which we then write as{}`ds = vAve *`dt
Be sure to address anything you do not fully understand in your self-critique.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
I'm used to seeing:
v = Δd / Δt
6 cm / sec = Δd / 5 sec
Δd = 5 sec × 6 cm/sec
Δd = 30 cm
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qYou were asked to read the text and some of the problems at the end of the section. Tell your instructor about something in the text you understood up to a point but didn't understand fully. Explain what you did understand, and ask the best question you can about what you didn't understand.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
Why did SI chose kg instead of g??? Why anything except the base term would be ""standard""? Not sure I get it.
#$&*
STUDENT QUESTION
I understand that we cannot measure to exact precision, but when we are dealing with estimated uncertainty, do we always
just increment our lowest unit by one and that is our uncertainty? Is there a standard that is used to figure out this?
INSTRUCTOR RESPONSE
The standard answer is that we assume an uncertainty of +- 1 of our smallest unit of precision. However, depending on how well we can 'see' that smallest unit, we can get pretty close to +- 1/2 of a unit.
A more sophisticated answer can be given in terms of the statistics of the normal distribution, but in this course we're not going to go into a whole lot of depth with that. A calculus background would be just about required to understand the analysis well enough to apply it meaningfully.
STUDENT QUESTION
I fully understand how to calculate uncertainty, but what if the uncertainty isn’t given? For example,
problem 6 asks us for the uncertainty of 1.67. Do we just use .01 as the uncertainty?
INSTRUCTOR RESPONSE
Depending on the nature of the instrument and the observation, +- .01 might be necessary, but we could go to +-.005 if can regard 1.67 as an accurate roundoff.
Without very good reason, though, +-.01 would be the safer assumption.
STUDENT QUESTION
I had trouble grasping the uncertainty. I understand the bit about significant figures, but I’m not sure how that applies
to the uncertainty. Is it just the last digit of the significant figure that could be wrong?
INSTRUCTOR RESPONSE
Any measurement is uncertain to some degree.
On some of the initial videos, despite the fact that the ruler was marked in inches and subdivided to eighths of an inch, the resolution of the image was poor and it wasn't possible to observe its position within eighths of an inch. Had the videos been very sharp (and taken from a distance sufficient to remove the effects of parallax), it might have been possible to make a good estimate of position to within a sixteenth of an inch or better.
So for the videos, the uncertainty in position was probably at least +- 1/4 inch, very possibly +- 1/2 inch. But had we used a better camera, we might well have been able to observe positions to within +-1/16 inch.
The video camera is one instrument, and each camera (and each setup) introduces its own unique uncertainties into the process of observation.
The same can be said of any setup and any instrument or combination of instruments.
STUDENT QUESTION: I understood the portion discussing the nature of science and felt familiar with much of the measurement. What I did not fully understand was how do you know when to write an answer using the powers of 10 or to leave it alone? Several of the tables had values in powers of 10 for metric prefixes such as centi and mili.
INSTRUCTOR RESPONSE
Whether you use scientific notation or not depends a lot on the context of the situation.
As a rule of thumb, I would recommend going to scientific notation for numbers greater than a million (10^6) and less than a millionth (10^-6). When numbers outside this range are involved in an analysis it's a good idea to put everything into scientific notation.
And when you know that scientific notation is or is not expected by your audience, write your numbers accordingly.
QUESTION RELATED TO UNIVERSITY PHYSICS (relevant only to University Physics students)
I don’t fully understand the dot product rule
INSTRUCTOR RESPONSE
The dot product of vectors A = a_1 i + a_2 j + a_3 k and B = b_1 i + b_2 j + b_3 k is a_1 * b_1 + a_2 * b_2 + a_3 * b_3. The dot product is simply a number.
The magnitude of A is | A | = sqrt( a_1 ^ 2 + a^2 ^ 2 + a_3 ^ 2); the magnitude of B is found in a similar manner.
The dot product is equal to | A | * | B | * cos(theta), where theta is the angle between the two vectors.
If you have the coefficients of the i, j and k vectors, it is easy to calculate the dot product, and it's easy to calculate the magnitudes of the two vectors. Setting the two expressions for the dot product equal to one another, we can easily solve for cos(theta), which we can then use to find theta.
More importantly for physics, we can find the projection of one vector on another. The projection of A on B is just the component of A in the direction of B, equal to | A | cos(theta). The projection of one vector on another is important in a number of situations (e.g., the projection of the force vector on the displacement, multiplied by the displacement, is the work done by the force on the interval corresponding to the displacement).
Dot products are a standard precalculus concept. Check the documents at the links below for an introduction to vectors and dot products. You are welcome to complete these documents, in whole or in part, and submit your work. If you aren't familiar with dot products, it is recommended you do so.
http://vhcc2.vhcc.edu/dsmith/genInfo/qa_query_etc/pc2/pc2_qa_09.htm
http://vhcc2.vhcc.edu/dsmith/genInfo/qa_query_etc/pc2/pc2_qa_10.htm
confidence rating #$&*:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qTell your instructor about something in the problems you understand up to a point but don't fully understand. Explain what you did understand, and ask the best question you can about what you didn't understand.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
Am I going to have to memorize those multipliers???
Prefix Symbol 10^n
yotta Y 10^24
zetta Z 10^21
exa E 10^18
peta P 10^15
tera T 10^12
giga G 10^9
mega M 10^6
kilo k 10^3
hecto h 10^2
deca da 10^1
deci d 10^−1
centi c 10^−2
milli m 10^−3
micro μ 10^−6
nano n 10^−9
pico p 10^−12
femto f 10^−15
atto a 10^−18
zepto z 10^−21
yocto y 10^−24
#$&*
SOME COMMON QUESTIONS:
*********************************************
QUESTION: I didn’t understand how to calculate uncertainty for a number such as 1.34. When given examples we had problems such as 1.34 ±0.5 and with that we had a formula (0.5/1.34)*100. So I do not understand how to compute uncertainty when no estimated uncertainty is given.
INSTRUCTOR RESPONSE:
The +- number is the uncertainty in the measurement.
The percent uncertainty is the uncertainty, expressed as a percent of the number being observed.
So the question in this case is simply, 'what percent of 1.34 is 0.5?'.
0.5 / 1.34 = .037, approximately. So 0.5 is .037 of 1.34.
.037 is the same as 3.7%.
I recommend understanding the principles of ratio, proportion and percent as opposed to using a formula. These principles are part of the standard school curriculum, though it does not appear that these concepts have been well mastered by the majority of students who have completed the curriculum. However most students who have the prerequisites for this course do fine with these ideas, after a little review. It will in the long run save you time to do so.
There are numerous Web resources available for understanding these concepts. You should check out these resources and let me know if you have questions.
*********************************************
QUESTION: I understood the main points of changing the different units, but I’m not sure when in the problem I should change the number to 10 raised to a certain power. In example 1-8 I did not understand why they changed 70 beats/min to 2 x 10^9 s.
2 * 10^9 is about the number of seconds in 70 years.
70 beats / min were not changed to 2 * 10^9 seconds; in changing the beats / minute to beats in a lifetime, there was a step where it was necessary to multiply by 2 * 10^9 seconds.
The example actually used 80 beats / min as a basis for the solution. This was converted to beats / second by the calculation
80 beats / min * 1 minute / (60 seconds), which would yield about 1.33 beats / second.
This was then multiplied by 2 * 10^9 seconds to get the number of beats in a lifetime:
2 * 10^9 seconds * 1.33 beats / second = 3 * 10^9 beats.
In the given solution 80 beats / min * 1 minute / (60 seconds) was not actually calculated; instead 80 beats / min * 1 minute / (60 seconds) was multiplied by 2 * 10^9 seconds in one step
80 beats / min * 1 minute / (60 seconds) * 2 * 10^9 seconds = 3 * 10^9 beats.
In your instructor's opinion the unit 'beats' should have been left in the result; the text expressed the result simply as 3 * 10^9, apparently ignoring the fact that the unit 'beats' was included in the quantities on the left-hand side.
Also the text identified this number as 3 trillion. In the British terminology this would be correct; in American terminology this number would be 3 billion, not 3 trillion.
COMMENT:
I thought that these problems were pretty basic and felt that I understood them well. However, when I got to questions 14 (determine your own mass in kg) and 15 (determining how many meters away the Sun is from the Earth), I did not understand how to complete these. I know my weight in pounds, but how can that be converted to mass in kilograms? I can look up how to convert miles to meters, but is this something I should already know?
INSTRUCTOR RESPONSE:
Both of these questions could be answered knowing that an object with a mass of 1 kg has a weight of 2.2 lb, and that an inch is 2.54 centimeters. This assumes that you know how many feet in a mile, and that the Sun is 93 million miles away. All these things should be common knowledge, but it doesn't appear to be so.
For my own weight I would reason as follows:
I weigh 170 lb and every kg of my mass weighs 2.2 lb. I'll have fewer kg of mass than I will pounds of weight, so it's reasonable to conclude that my mass is 170 / 2.2 kg, or about 78 kg.
More formally 170 lb * (1 kg / (2.2 lb) ) = 170 / 2.2 kg = 78 kg, approx.. (technical point: this isn't really right because pounds and kilograms don't measure the same thing--pounds measure force and kg measure mass--but we'll worry about that later in the course).
Converting 93 million miles to kilometers:
93 million miles * (5280 feet / mile) * (12 inches / foot) * (2.54 cm / inch) * (1 meter / (100 cm) ) = 160 billion meters (approx.) or 160 million kilometers.
QUESTION
What proved to be most tricky in the problems portion was the scientific notation. I am somewhat familiar with this from
past math classes, but had trouble when dealing with using the powers of 10. I had trouble dealing with which way to move my decimal according to the problems that were written as 10^-3 versus 10^3. Which way do you move the decimal when dealing with negative or positive powers of 10?
INSTRUCTOR RESPONSE
Using your numbers, 10^3 means 10 * 10 * 10 = 1000.
When you multiply a number by 1000 you move the decimal accordingly. For example 3.5 * 1000 = 3500.
10^-3 means 1 / 10^3 = 1 / (10 * 10 * 10) = 1 / 1000.
When you multiply by 10^-3 you are therefore multiplying by 1 / 1000, which is the same as dividing by 1000, or multiplying by .001.
For example 3.5 * 10^-3 = 3.5 * .001 = .0035.
As another example 5 700 000 * 10^-3 would be 5 700 000 * (1 / 1000) = 5 700.
From these examples you should be able to infer how the decimal point moves.
You can also search the Web under 'laws of exponents', 'arithmetic in scientific notation', and other keywords.
There isn't a single site I can recommend, and if I did find a good one its URL might change by the time you try to locate it. In any case it's best to let you judge the available materials yourself.
When searching under 'arithmetic in scientific notation' using Google, the following appear as additional suggested search phrases:
scientific notation
exponents
scientific notation metric prefixes
significant digits
multiply with scientific notation
scientific notation decimal
scientific notation lessons
addition and subtraction with scientific notation
scientific notation metric system
'scientific notation lessons' might be a good place to look.
QUESTIONS AND RESPONSES
1)In the text question five asks for the percent uncertainty of a measurement given 1.57 m^2
I think that we figure this by an uncertainty of .01/1.57m^2 = .6369 or approximately one. ??????Am I correct in how I
calculate this??????? Can I asuume that if the number given was 1.579 then we would calculate it by .001/1.57 = .1 % approximately or am I incorrect?????
You're on the right track.
There are two ways to look at this.
1.57 m^2 represents a quantity which rounds off to 1.57, so presumably lies between 1.565 and 1.575.
This means that the quantity is within .005 of 1.57.
.005 / 1.57 = .003, approx., so the uncertainty is .003 of 1.57, which is the same as 0.3%, of 1.57.
Another way to look at it:
1.57 could be interpreted to mean a number between 1.56 and 1.58. The uncertainty would then be .01, which is .01 / 1.57 = .006, or 6%, of 1.57.
2)In the text question number 11 the book asks what is the percent uncertainty in the volume of a sphere whose radius is
r=2.86 plus or minus .09.
I know that the Volume of a sphere is 4/3 pi r^3, so I calculated the volume to be 4/3 pi (2.86)^3 = 97.99 and to get the
percent uncertainty I tried to divide 0.09/97.99 * 100 =.091846, but the book answer is 9% ??????I am not sure what i am doing wrong here?????????????????
Again there are two ways to approach this.
I believe the book tells you that the uncertainty in the square of a number is double the uncertainty in the number, and the uncertainty in the cube of the number is trip the uncertainty in the number.
An uncertainty of .09 in a measurement of 2.86 is .09 / 2.86 = .03, approx., or about 3%. As you state, you cube the radius to find the volume. When 2.86 is cubed, the resulting number has three times the uncertainty, or about 9%.
Another approach:
Calculate the volume for r = 2.86.
Then calculate the volume for r = 2.86 - .09 = 2.77.
You will find that the resulting volumes differ by about 9%.
You could just as well have calculated the volume for r = 2.86 + .09 = 2.95. Again you would find that the volume differs from the r = 2.86 volume by about 9%.
STUDENT QUESTION
When reading the section about the scientific notation some of the answers were written in powers of 10 and some were just
written regularly. How do I know when to turn my answer into a power of 10 or to leave my answer as is?
INSTRUCTOR RESPONSE
Good question.
Convenience and readability are the main factors. It's a lot less typing or writing to use 438 000 000 000 000 000 000 than 4.38 * 10^20, and it's easier for the reader to understand what 10^20 means than to count up all the zeros.
For readability any number greater than 100 000 or less than .001 should probably be written in scientific notation.
When scientific notation is first used in a calculation or result, it should be used with all numbers in that step, and in every subsequent step of the solution.
QUESTION
In my problems (I am working from the University Physics text- exercise 1.14) they are asking for the ratio of length to
width of a rectangle based on the fact that both of the measurements have uncertainty. ?????Is there anything special you
have to do when adding or multiplying numbers with uncertainty?????? I know that there are rules with significant figures,
but I don’t understand if the same is true for uncertain measurements.
INSTRUCTOR RESPONSE:
For example:
If there is a 5% uncertainty in length and no significant uncertainty in width, then area will be uncertain by 5%.
If there is a 5% uncertainty in length and a 3% uncertainty in width, then it is possible for the area result to be as much as 1.05 * 1.03 = 1.08 times the actual area, or as little as .95 * .97 = .92 times the actual area. Thus the area is uncertain by about 8%.
This generalizes. The percent uncertainty in the product or quotient of two quantities is equal to the sum of the percent uncertainties in the individual quantities (assuming the uncertainties are small compared to the quantities themselves).
(optional addition for University Physics students): The argument is a little abstract for this level, but the proof that it must be so, and the degree to which it actually is so, can be understood in terms of the product rule (fg) ' = f ' g + g ' f. However we won't go into those details at this point.
QUESTIONs RELATED TO UNIVERSITY PHYSICS (relevant only to University Physics students)
I understand everything but the part on measuring the individual i j k vectors by using cosine.
INSTRUCTOR RESPONSE
It's not completely clear what you are asking, but I suspect it has to do with direction cosines.
The vector A = a_1 i + a_2 j + a_3 k makes angles with the directions of the x axis, the y axis and the z axis.
Let's consider first the x axis.
The direction of the x axis is the same as the direction of the unit vector i.
The projection of A on the x direction is just a_1. This is obvious, but it can also be found by projecting the A vector on the i vector.
This projection is just | A | cos(alpha), where alpha is the angle between A and the x direction.
Now A dot i = A = (a_1 i + a_2 j + a_3 k) dot i = A = a_1 i dot i + a_2 j dot i + a_3 k dot i = a_1 * 1 + a_2 * 0 + a_3 * 0 = a_1.
It's also the case that A dot i = | A | | i | cos(alpha). Since | i | = 1, it follows that A dot i = | A | cos(alpha), so that
cos(alpha) = A dot i / | A | = a_1 / sqrt( a_1 ^ 2 + a_2 ^ 2 + a_3 ^ 2 ).
Making the convention that alpha is the angle made by the vector with the x direction, we say that cos(alpha) is the direction cosine of the vector with the x axis.
If beta and gamma are, respectively, the angles with the y and z axes, reasoning similar to the above tells us that
cos(beta) = a_2 / sqrt( a_1 ^ 2 + a_2 ^ 2 + a_3 ^ 2 ) and
cos(gamma) = a_3 / sqrt( a_1 ^ 2 + a_2 ^ 2 + a_3 ^ 2 ).
cos(alpha), cos(beta) and cos(gamma) are called the 'direction cosines of the vector A' with respect to the three coordinate axes.
Recall that alpha, beta and gamma are the angles made the the vector with the three respective coordinate axes.
If we know the direction cosines and the magnitude of the vector, we can among other things find its projection on any of the coordinate axes.
STUDENT QUESTION (University Physics)
Chapter 1 wasn’t bad of course I had to read in detail the vector section there is little confusion on what is meant by
antiparallel. Does that mean that you wouldn’t displace anything if the magnitude was equal only the direction was different?
Also when handwritten vectors are written above the say A the arrow is only in one direction (to the right) not the direction
traveled?
INSTRUCTOR RESPONSE
I don't have that reference handy, but my understanding of the word 'antiparallel' is two vectors, one of which is in the direction exactly opposite the other.
If two vectors are antiparallel, then their dot product would equal negative of the product of their magnitudes:
The angle theta between antiparallel vectors v and w would be 180 degrees, so v dot w = | v | * | w | * cos(180 deg) = - | v | * | w | .
STUDENT QUESTION
I do not understand the answer to problem 13b. I do not understand why it is not correct to write the total distance covered
by the train as 890,010 meters. I do not understand this because 890 km equals 890,000 meters and if you add the 10 meters
the train overshot the end of the track by, it seems to me the answer should be 890,010 meters. I think the answer has
something to do with uncertainty, but I cannot figure out how to apply it to this problem.
INSTRUCTOR RESPONSE
If the given distance was 890. kilometers instead of 890 km, then the 0 would be significant and it would be appropriate to consider additional distances as small as 1 km.
Had the given distance been 890 000. meters then all the zeros would be significant and additional distances as small as 1 meter would be considered.
As it is only the 8 and the 9 are significant, so that distances less than 10 km would not be considered significant.
Please feel free to include additional comments or questions:
So many questions about questions!"
Very good. Do see my notes.
Your technical advice is appreciated. I've been using Audacity for some time now, for the very purpose you mention, but most of the other info is new and potentially quite useful. It also gives me insight into the nature of your thinking, which will help me compose to-the-point responses to your work.