assignment 18

#$&*

course mth151

nov 4th

018. Base-10 Place-value Number System

*********************************************

Question: `q001. There are 7 questions in this set.

From lectures and textbook you will learn about some of the counting systems used by past cultures. Various systems enabled people to count objects and to do basic arithmetic, but the base-10 place value system almost universally used today has significant advantages over all these systems.

The key to the base-10 place value system is that each digit in a number tells us how many times a corresponding power of 10 is to be counted.

For example the number 347 tells us that we have seven 1's, 4 ten's and 3 one-hundred's, so 347 means 3 * 100 + 4 * 10 + 7 * 1.

Since 10^2 = 100, 10^1 = 10 and 10^0 = 1, this is also written as

3 * 10^2 + 4 * 10^1 + 7 * 10^0.

How would we write 836 in terms of powers of 10?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8 * 100 + 3 * 10 + 6 * 1, or 8 * 10^2 + 3 * 10^1 + 6 * 10^0

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

836 means 8 * 100 + 3 * 10 + 6 * 1, or 8 * 10^2 + 3 * 10^1 + 6 * 10^0.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q002. How would we write 34,907 in terms of powers of 10?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3 * 10,000 + 4 * 1000 + 9 * 100 + 0 * 10 + 7 * 1, or 3 * 10^4 + 4 * 10^3 + 9 * 10^2 + 0 * 10 + 7 * 1

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

34,907 means 3 * 10,000 + 4 * 1000 + 9 * 100 + 0 * 10 + 7 * 1, or 3 * 10^4 + 4 * 10^3 + 9 * 10^2 + 0 * 10 + 7 * 1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q003. How would we write .00326 in terms of powers of 10?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0 * 10^-1 + 0 * 10^-2 + 3 * 10^-3 + 2 * 10^-4 + 6 * 10^-5

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

First we note that

.1 = 1/10 = 1/10^1 = 10^-1,

.01 = 1/100 = 1/10^2 = 10^-2,

.001 = 1/1000 = 1/10^3 = 10^-3, etc..

Thus .00326 means

0 * .1 + 0 * .01 + 3 * .001 + 2 * .0001 + 6 * .00001 =

0 * 10^-1 + 0 * 10^-2 + 3 * 10^-3 + 2 * 10^-4 + 6 * 10^-5 .

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q004. How would we add 3 * 10^2 + 5 * 10^1 + 7 * 10^0 to 5 * 10^2 + 4 * 10^1 + 2 * 10^0?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(3 * 10^2 + 5 * 10^1 + 7 * 10^0) + (5 * 10^2 + 4 * 10^1 + 2 * 10^0)

8 * 10^2 + 9 * 10^1 + 9 * 10^0=866

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We would write the sum as

(3 * 10^2 + 5 * 10^1 + 7 * 10^0) + (5 * 10^2 + 4 * 10^1 + 2 * 10^0) ,

which we would then rearrange as

(3 * 10^2 + 5 * 10^2) + ( 5 * 10^1 + 4 * 10^1) + ( 7 * 10^0 + 2 * 10^0),

which gives us

8 * 10^2 + 9 * 10^1 + 9 * 10^0. This result would then be written as 899.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. How would we add 4 * 10^2 + 7 * 10^1 + 8 * 10^0 to 5 * 10^2 + 6 * 10^1 + 4 * 10^0?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10*10^2 = 10^3

10^10^2 + 4 * 10^1 + 2 * 10^0

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We would write the sum as

(4 * 10^2 + 7 * 10^1 + 8 * 10^0) + (5 * 10^2 + 6 * 10^1 + 4 * 10^0) ,

which we would then rearrange as

(4 * 10^2 + 5 * 10^2) + ( 7 * 10^1 + 6 * 10^1) + ( 8 * 10^0 + 4 * 10^0),

which gives us

9 * 10^2 + 13 * 10^1 + 12 * 10^0.

Since 12 * 10^0 = (2 + 10 ) * 10^0 = 2 * 10^0 + 10^1, we have

9 * 10^2 + 13 * 10^1 + 1 * 10^1 + 2 * 10^0 =

9 * 10^2 + 14 * 10^1 + 2 * 10^0.

Since 14 * 10^1 = 10 * 10^1 + 4 * 10^1 = 10^2 + 4 * 10^1, we have

9 * 10^2 + 1 * 10^2 + 4 * 10^1 + 2 * 10^0 =

10^10^2 + 4 * 10^1 + 2 * 10^0.

Since 10*10^2 = 10^3, we rewrite this as 1 * 10^3 + 0 * 10^2 + 4 * 10^1 + 2 * 10^0.

This number would be expressed as 1042.

STUDENT SOLUTION

(4 x 10^2 + 5 x 10^2) + (7 x 10^1 + 6 + 10^1) + (8 x 10^0 + 4 x 10^0)

adds up to

9 x 10^2 + 13 x 10^1 + 12 x 10^0 = 1042

INSTRUCTOR RESPONSE

You got

9 x 10^2 + 13 x 10^1 + 12 x 10^0 = 1042

But this isn't in its final powers-of-10 notation.

13 * 10^1 isn't a legal expression. Since 13 is greater than 9, you would use the fact that 13 * 10^1 = 10^2 + 3 * 10^1 to write this in correct notation.

Your expression would then become

9 x 10^2 + 10^2 + 3 x 10^1 + 12 x 10^0

Also 12 * 10^0 = 10^1 + 2 * 10^0, so your expression is equivalent to

9 x 10^2 + 1 * 10^2 + 3 x 10^1 + 10^1 + 2 x 10^0

When we add the like powers of 10 we find that 9 * 10^2 + 10^2 = 10 * 10^2, which is 10^3.

Since 3 * 10^1 + 10^1 = 4 * 10^1.

your final expression should be

10^3 + 4 * 10^1 + 2 * 10^0.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q006. Write each of the following in expanded notation using the highest possible powers of 10, and explain your reasoning for each, using only expanded notation in your explanations:

14 * 10^3

4 * 10^4 + 14 * 10^3

8 * 10^3 + 17 * 10^2 + 21 * 10^1 + 15 * 10^0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8* 1000 + 17 * 100 + 21 * 10 + 15 * 0

8000 + 1700 + 210 + 0= 9910

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q007. Show how we would add 8 * 10^2 + 7 * 10^0 to 4 * 10^2 + 5 * 10^0, performing all steps in expanded powers of 10.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

807=500

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

------------------------------------------------

Self-critique Rating:

@&

You haven't shown how to add the two numbers, and haven't shown the steps.

*@

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#