73

#$&*

course mth151

029. Variation

*********************************************

Question: `q001. Note that there are five questions in this set.

If y is proportional to x, and if y = 9 when x = 12, then what is the value of y when x = 32?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y =.75*32=24

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is proportional to x is to say that there exists some constant number k such that y = k x. Using the given values of y and x we can determine the value of k:

Since y = 9 when x = 12, y = k x becomes

9 = k * 12. Dividing both sides by 12 we obtain

9 / 12 = k. Reducing and reversing sides we therefore obtain k =.75.

Now our proportionality reads y = .75 x. Thus when x = 32 we have

y = .75 * 32 = 24.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q002. If y is proportional to the square of x, and y = 8 when x = 12, then what is the value of y when x = 9?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y =1/18*9^2=81/18=4.5

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is proportional to x is to say that there exists some constant number k such that y = k x^2. Using the given values of y and x we can determine the value of k:

Since y = 8 when x = 12, y = k x^2 becomes

8 = k * 12^2, or

8 = 144 k. Dividing both sides by 144 we obtain

k = 8 / 144 = 1 / 18.

Now our proportionality reads y = 1/18 x^2. Thus when x = 9 we have

y = 1/18 * 9^2 = 81 / 18 = 4.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q003. If y is inversely proportional to x and if y = 120 when x = 200, when what is the value of y when x = 500?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=24,000/500 =480

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is inversely proportional to x is to say that there exists some constant number k such that y = k / x. Using the given values of y and x we can determine the value of k:

Since y = 120 when x = 200, y = k / x becomes

120 = k / 200. Multiplying both sides by 200 we obtain

k = 120 * 200 = 24,000.

Now our proportionality reads y = 24,000 / x. Thus when x = 500 we have

y = 24,000 / 500 = 480.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q004. If y is inversely proportional to the square of x and if y = 8 when x = 12, then what is the value of y when x = 16?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

k = 8 * 144 = 1152.

y = 1152 / (16)^2 =4.5

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is inversely proportional to the square of x is to say that there exists some constant number k such that y = k / x^2. Using the given values of y and x we can determine the value of k:

Since y = 8 when x = 12, y = k / x^2 becomes

8 = k / 12^2, or

8 = k / 144. Multiplying both sides by 144 we obtain

k = 8 * 144 = 1152.

Now our proportionality reads y = 1152 / x^2. Thus when x = 16 we have

y = 1152 / (16)^2 = 4.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. If y is proportional to the square of x and inversely proportional to z, then if y = 40 when x = 10 and z = 4, what is the value of y when x = 20 and z = 12?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = k x^2 / z

40 = k * 10^2 / 4

k = 1.6

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is proportional to the square of x and inversely proportional to z is to say that the there exists a constant k such that y = k x^2 / z. Substituting the given values of x, y and z we can evaluate k:

y = k x^2 / z becomes

40 = k * 10^2 / 4. Multiplying both sides by 4 / 10^2 we obtain

40 * 4 / 10^2 = k, or

k = 1.6.

Our proportionality is now y = 1.6 x^2 / z, so that when x = 20 and z = 12 we have

y = 1.6 * 20^2 / 12 = 1.6 * 400 / 12 = 53 1/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q006. If y is proportional to x^2, with y = 9 when x = 2, what is the value of y when x = 17?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q007. If y is inversely proportional to x^3, with y = 9 when x = 7, then what is the value of y when x = 2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

------------------------------------------------

Self-critique Rating:

73

#$&*

course mth151

12/19/2013

029. `query 29

*********************************************

Question: `q7.3.18 (1/3) / 6 = 1/18. Is this ratio equation valid or not and how did you determine your answer?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

18 * 1/3 = 6

true

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**If we multiply both sides by 6 * 18 we get

6 * 18 * (1/3 ) / 6 = 6 * 18 * (1 / 18) or

18 * 1/3 = 6. Note that the effect here is the same as that of 'cross-multiplying', but it's a good idea to remember that 'cross-multiplying' is really a shortcut way to think of multiplying both sides by the common denominator.

Since 18 * 1/3 = 18 / 3 = 6, the equation 18 * 1/3 = 6 is true, which verifies the original equality. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q7.3.20 z/8 = 49/56. Solve this proportionality for z.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

z = 8 * 49 / 56

z = 7

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Multiply both sides by 8 * 56 to get

8 * 56 * z / 8 = 8 * 56 * 49 / 56. Simplify to get

56 * z = 8 * 49. Divide both sides by 56 to get

z = 8 * 49 / 56. Simplify to get

z = 7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q7.3.42 8 oz .45; 16 oz. .49; 50 oz. 1.59`sb Which is the best value per unit for green beans and how did you obtain your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

16 oz for .49 best value at 3.06 cents per oz

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** 45 cents / 8 oz = 5.63 cents / oz.

49 cents / 16 oz = 3.06 cents / oz.

159 cents / 50 oz = 3.18 cents / oz.

16 oz for .49 is the best value at 3.06 cents / oz. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q7.3.45 triangles 4/3, 2, x; 4, 6, 3. What is the value of x and how did you use an equation to find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x/3=4/3/4

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** the 4/3 corresponds to 4, 2 corresponds to 6, and x corresponds to 3.

The ratios of corresponding sides are all equal.

So 4/3 / 4 = 2 / 6 = x / 3.

Just using x / 3 = 2 / 6 we solve to get x = 1.

We would have obtained the same thing if we had used x / 3 = 4/3 / 4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf z = 9 when x = 2/3 and z varies inversely as x, find z when x = 5/4. Show how you set up and used an equation of variation to solve this problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

9 = k / ( 2/3)

2/3 * 9 = k so

k = 6

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** If z varies inversely as x then z = k / x.

Then we have

9 = k / ( 2/3). Multiplying both sides by 2/3 we get

2/3 * 9 = k so

k = 6.

Thus z = 6 / x. So when x = 5/4 we have

z = 6 / (5 /4 ) = 24 / 5 = 4.8. Note that the translations of other types of proportionality encountered in this chapter include:

z = k x^2: z varies as square of x.

z = k / x^2: z varies inversely as square of x.

z = k x: z is proportional to x. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q7.3.72. Illumination is inversely proportional to the square of the distance from the source. Illumination at 4 ft is 75 foot-candles. What is illumination at 9 feet?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

k = 75 * 4^2 = 75 * 16 = 1200

the illumination is 1200

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Set up the variation equation I = k / r^2, where I stands for illumination and r for distance (you might have used different letters). This represents the inverse proportionality of illumination with the square of distance.

Use I = 75 when r = 4 to get

75 = k / 4^2, which gives you

k = 75 * 4^2 = 75 * 16 = 1200.

Now rewrite the proportionality with this value of k: I = 1200 / r^2.

To get the illumination at distance 9 substitute 9 for r to get

I = 1200 / 9^2 = 1200 / 81 = 14.8 approx..

The illumination at distance 9 is about 14.8.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q7.3.66 length inv prop width; L=27 if w=10; w = 18. L = ?

Explain how you set up and used a variation equation to obtain the length as a function of width, giving your value of k. Then explain how you used your equation to find the length for width 18

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

L =270/18=15

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Set up the variation equation L = k / w, which is the inverse proportion.

Use L = 27 when w = 10 to get

27 = k / 10, which gives you

k = 27 * 10 = 270.

Now we know that L = 270 / w.

So if w = 18 you get

L = 270 / 18 = 15. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q7.3.66 length inv prop width; L=27 if w=10; w = 18. L = ?

Explain how you set up and used a variation equation to obtain the length as a function of width, giving your value of k. Then explain how you used your equation to find the length for width 18

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

L =270/18=15

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Set up the variation equation L = k / w, which is the inverse proportion.

Use L = 27 when w = 10 to get

27 = k / 10, which gives you

k = 27 * 10 = 270.

Now we know that L = 270 / w.

So if w = 18 you get

L = 270 / 18 = 15. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. Let me know if you have questions. &#